

IBM Cognos 10 Report
Studio Cookbook
Second Edition

Over 100 recipes that will show you how to use IBM
Cognos 10 Report Studio to build creative, stunning,
and sophisticated reports

Ahmed Lashin

Abhishek Sanghani

BIRMINGHAM - MUMBAI

IBM Cognos 10 Report Studio Cookbook
Second Edition

Copyright © 2013 Packt Publishing

All rights reserved. No part of this book may be reproduced, stored in a retrieval system, or
transmitted in any form or by any means, without the prior written permission of the publisher,
except in the case of brief quotations embedded in critical articles or reviews.

Every effort has been made in the preparation of this book to ensure the accuracy of the
information presented. However, the information contained in this book is sold without
warranty, either express or implied. Neither the authors, nor Packt Publishing, and its dealers
and distributors will be held liable for any damages caused or alleged to be caused directly or
indirectly by this book.

Packt Publishing has endeavored to provide trademark information about all of the companies
and products mentioned in this book by the appropriate use of capitals. However, Packt
Publishing cannot guarantee the accuracy of this information.

First published: May 2010

Second edition: August 2013

Production Reference: 1200813

Published by Packt Publishing Ltd.
Livery Place
35 Livery Street
Birmingham B3 2PB, UK.

ISBN 978-1-84968-820-8

www.packtpub.com

Cover Image by Vivek Sinha (vs@viveksinha.com)

Credits

Authors
Ahmed Lashin

Abhishek Sanghani

Reviewers
Ramesh Parcha

João Patrão

Acquisition Editor
Joanne Fitzpatrick

Lead Technical Editor
Dayan Hyames

Technical Editors
Jalasha D'costa

Menza Mathew

Zafeer Rais

Amit Ramadas

Project Coordinators
Arshad Sopariwala

Venitha Cutinho

Proofreader
Paul Hindle

Indexers
Rekha Nair

Monica Ajmera Mehta

Production Coordinator
Shantanu Zagade

Cover Work
Shantanu Zagade

About the Authors

Ahmed Lashin is a highly motivated Information Technology (IT) professional with more
than nine years of experience, most of it in the Business Intelligence and data warehousing
domains. His core skills include a full set of BI tools, ETL, and data warehousing tools such as
IBM Cognos, IBM DataStage, SAP BusinessObjects, Microsoft SQL Server BI SSIS, SSAS, and
SSRS. Through his experience, he has been exposed to many industries such as banking and
finance, oil and gas, education, and the automotive industry.

Currently, Ahmed is working as a Business Intelligence Lead in one of IBM's major global
partners. He is also an IBM Certified Cognos Solution Expert.

This is Ahmed's first technical book. He is maintaining a technical blog at
http://www.alashin.net. You can get in touch with him at ahmed@alashin.net.

I would like to thank my beloved wife Esraa for all the encouragement
and support she has given me. I would also like to thank my mother
and my family.

I would like also to thank my partner Abhishek for his great work and his
valuable comments. With your work, Cognos is much more fun.

A special thanks to Packt Publishing for their efforts. I am sure that I
wouldn't have been able to complete this book without their support.

Abhishek Sanghani was born in India and attended Mumbai University, where he majored
in Computer Engineering. He began his career in 2004 as a Business Intelligence and Cognos
Consultant, and has worked with leading IT and financial services companies since then.

He pursued Finance Management along with his work in the field of Cognos and BI,
successfully progressing and winning awards and certifications year-on-year. Presently, he is
working in the United Kingdom, utilizing his skills of Cognos, SQL, BI, and data warehousing.
In his free time, he writes technical blogs and also provides training/seminars on demand.

He first authored Packt Publishing's book IBM Cognos 8 Report Studio Cookbook, which
was well received worldwide. He has recently composed a video course called IBM Cognos
10 Report Studio Fundamentals, which is available on the www.packtpub.com website for
download as well as online streaming.

I would like to thank Ahmed for giving a new life and avatar to my Cookbook,
making it suitable for Cognos v10.x. I am sure, this new book with its new
content, easy-to-understand recipes, real-life examples, and v10 sample
codes, will prove very useful to Report Studio users, project managers,
developers, and business analysts.

I would also like to thank the whole Packt Publishing team for all the hard
work and support. On a personal note, I would also like to thank my loving
wife Dolly for the encouragement and for putting up with my IT nonsense at
the dinner table.

About the Reviewers

Ramesh Parcha graduated with a degree in Mechanical Engineering from Gulbarga
University and has been working in the IT industry for over 13 years now. He is presently
working in NTTDATA as a Project Manager.

He has been working with IBM Cognos BI products since 2006.

Earlier in his career, he worked for SETKHAM, SIS Inoftech, and Dataformix Technologies, USA.
He has worked on a few other books such as IBM Cognos Framework Manager, Video Course
on IBM Cognos 10 Report Studio, and IBM Cognos 8 Report Studio Cookbook.

It was a great pleasure reviewing this book and I would sincerely like to
thank Dayan and Arshad.

João Patrão is a technology leader with expertise in mobile development, application
integration aligned with business and strategic goals, multi-disciplinary team management,
and project delivery. As the IT Director of SUMA, he has built a responsive and proactive
IT organization, with improvements to service delivery, standardization, and business/
systems performance.

With a strong orientation to strategic and business objectives, he always looks for innovation
and integration of different methods and technologies to create new solutions that can
maximize the talent and the resources of the organization.

He has a background in Engineering and Computer Science at Instituto Superior Técnico
(IST Lisbon) and has an Executive MBA from EGP-University of Porto Business School.

www.PacktPub.com

Support files, eBooks, discount offers and more
You might want to visit www.PacktPub.com for support files and downloads related to
your book.

Did you know that Packt offers eBook versions of every book published, with PDF and ePub
files available? You can upgrade to the eBook version at www.PacktPub.com and as a print
book customer, you are entitled to a discount on the eBook copy. Get in touch with us at
service@packtpub.com for more details.

At www.PacktPub.com, you can also read a collection of free technical articles, sign up
for a range of free newsletters and receive exclusive discounts and offers on Packt books
and eBooks.

TM

http://PacktLib.PacktPub.com

Do you need instant solutions to your IT questions? PacktLib is Packt's online digital book
library. Here, you can access, read and search across Packt's entire library of books.

Why Subscribe?
 f Fully searchable across every book published by Packt
 f Copy and paste, print and bookmark content
 f On demand and accessible via web browser

Free Access for Packt account holders
If you have an account with Packt at www.PacktPub.com, you can use this to access
PacktLib today and view nine entirely free books. Simply use your login credentials for
immediate access.

Instant Updates on New Packt Books
Get notified! Find out when new books are published by following @PacktEnterprise on
Twitter, or the Packt Enterprise Facebook page.

I would like to dedicate this book to my beloved wife Esraa. Thank you for being you.

—Ahmed Lashin

I am dedicating this book to the smiling addition to my life, my daughter Siyara.

—Abhishek Sanghani

Table of Contents
Preface 1
Chapter 1: Report Authoring Basic Concepts 7

Introduction 7
Summary filters and detail filters 9
Sorting grouped values 13
Aggregation and rollup aggregation 15
Implementing if-then-else in filters 18
Formatting data – dates, numbers, and percentages 19
Creating sections 22
Hiding columns in crosstabs 25
Prompts – display value versus use value 30

Chapter 2: Advanced Report Authoring 35
Introduction 35
Adding cascaded prompts 36
Creating a nested report – defining the master detail relationship 39
Writing back to the database 44
Adding conditional formatting 49
Formatting negative values 53
Playing with conditional styles 57
Using conditional blocks – many reports in one 61
Defining drill-through from crosstab intersection 64
Overriding crosstab intersection drill-through definitions 66

Chapter 3: Using JavaScript Files – Tips and Tricks 69
Introduction 69
Defining dynamic default values for prompts 70
Changing the title of the value prompt 73
Validating textbox prompts 75
Showing/hiding prompt controls at runtime 77

ii

Table of Contents

Selecting and submitting values automatically 80
Manipulating the Date Time control 83
Creating a variable width bar chart using JavaScript 86

Chapter 4: The Report Page – Tips and Tricks 91
Introduction 91
Showing images dynamically (traffic light report) 92
Handling the missing image issue 95
Dynamic links to an external website (a Google Maps example) 99
Alternating drill links 101
Showing tooltips on reports 104
Merged cells in Excel output 107
Worksheet name in Excel output 109
Conditional column titles 111

Chapter 5: Working with XML 115
Introduction 115
Changing drill targets quickly 116
Copying and pasting drill links 122
Removing references to old packages or items 126
A hidden gem in XML – row level formatting 128

Chapter 6: Writing Printable Reports 133
Introduction 133
Controlling the container size and rows per page 134
Eliminating orphan rows 137
Defining page orientation and size (and overriding them for one page) 139
Avoiding page title repetition 142
Horizontal pagination 145
Page numbering with horizontal pagination 147
Choosing the output format from a prompt 149
Choosing the right colors 151
Defining page sets 153
Cautions about HTML items and JavaScript files 155
Displaying the report name in a footer 155

Chapter 7: Working with Dimensional Models 159
Introduction 159
List report or crosstab report 160
Filtering rows or columns 161
Filtering a whole report 165
Adding a prompt into Slicer and its limitations 166
Achieving zero suppression 169

iii

Table of Contents

Aggregation versus preaggregated values 171
The roleValue() function 175
Swapping dimensions using MUN manipulation 177

Chapter 8: Working with Macros 183
Introduction 183
Adding data-level security using the CSVIdentityMap macro 184
Using the Prompt macro in native SQL 186
Making prompts optional 188
Adding a token using macros 191
Using the prompt() and promptmany() macros in query subjects 194
Showing the prompt values in a report based on security 195
String operations to get it right 197
Showing a username in the footer 199

Chapter 9: Using Report Studio Efficiently 203
Introduction 203
Using Report Studio's environmental options 204
Copying and pasting partial or full reports 210
Upgrading report specifications 213
Setting the execution timeout 214
Setting the maximum row limit 216
Handling slow report validation 218
Capturing a query 220
Browsing values from the data expression window 224
Viewing the page structure 226
Picking up and applying styles 228
Using the "grab them all" practice 230
Using Default Data Formats 233

Chapter 10: Working with Active Reports 237
Introduction 237
Building tabbed reports 238
Working with Decks 242
Working with the Data Deck 247
Filtering data using Data Check Box Group 251

Chapter 11: Charts and New Chart Features 257
Introduction 257
Chart formatting options 259
Converting a chart to another chart type 265
Working with pie charts 268
Getting started with bullet charts 272
Getting started with scatter charts 277

iv

Table of Contents

Chapter 12: More Useful Recipes 281
Introduction 281
Timing report execution 281
Missing values versus zero values 285
Overriding data formatting using patterns 288
Setting up conditional drill-throughs 290
Dynamically switching between reports using an iFrame 292
Freezing column titles 296

Chapter 13: Best Practices 301
Introduction 301
Reducing the number of query items 301
Highlighting hidden items 307
Using relative paths for images 308
Controlling JavaScript file execution 312
Customizing classes for report-wide effect 314
Creating templates 317
Regression testing 320
Commenting the code 322
Naming data containers (lists, crosstabs, and charts) for use in
Cognos Workspace 325
Enabling a larger worksheet size for Excel 2007 327

Appendix: Recommendations and References 331
Introduction 331
Version controlling 331
Recommendations for prompt types 332
Cognos Mashup Service 333
SDK and third-party tools for Cognos 333
IBM Cognos Analysis For Excel (CAFE) 334
IBM Cognos for Microsoft Office 335
IBM Cognos Workspace 336
IBM Cognos Workspace Advanced 336
IBM Cognos Cloud 337

Index 339

Preface
IBM Cognos Report Studio is widely used for creating and managing business reports in
medium to large-scale companies. It is simple enough for any business analyst, power user, or
developer to pick up and start developing basic reports. However, when it comes to developing
more sophisticated, fully functional business reports for wider audiences, report authors will
need guidance.

This book helps you to understand and use all the features provided by the new version of
IBM Cognos 10 Report Studio to generate impressive deliverables. It will take you from being
a beginner to a professional report author. It bridges the gap between the basic training
provided by manuals or trainers and the practical techniques learned over years of practice.

What this book covers
Chapter 1, Report Authoring Basic Concepts, introduces you to some fundamental
components and features that you will be using in most of the reports. This is meant to bring
all readers on the same page before moving on to advanced topics. It covers filters, sorting,
aggregations, formatting and conditional formatting, and so on.

Chapter 2, Advanced Report Authoring, introduces you to the advanced techniques required
to create more sophisticated report solutions that meet demanding business requirements.
It covers cascaded prompts, master-detail queries, conditional blocks, defining drill links,
and overriding the drill links. The most distinguishing recipe in this chapter is Writing back
to the database.

Chapter 3, Using JavaScript Files – Tips and Tricks, explains how to manipulate the default
selection, titles, visibility, and so on when the prompt page loads. It also explains how to add
programmability like validating the prompt selection before submitting the values to the report
engine. A favorite recipe in this chapter is Creating a variable width bar chart using JavaScript.
The recipes in this chapter open a whole new avenue for you to progress on.

Preface

2

Chapter 4, The Report Page – Tips and Tricks, shows some techniques to break boundaries
and provides some features in reports that are not readily available in the Studio. It also talks
about showing images dynamically (traffic lights), handling missing images, dynamic links
to external websites (for example, Google Maps), alternating drill links, showing tooltips on
reports, minimum column width, and merged cells in Excel output.

Chapter 5, Working with XML, shows you how to edit the report outside the Studio by directly
editing the XML specifications. The recipes in this chapter show you how to save time and
quickly change references to old items, copy and paste the drill parameter mappings, and
introduce you to important XML tags. The most intriguing recipe in this chapter is A hidden
gem in XML – row level formatting.

Chapter 6, Writing Printable Reports, gives you tips and shows you the options available within
the Studio to make the reports printable, as business reports need to be printed. This is often
ignored during technical specification and development.

Chapter 7, Working with Dimensional Models, explains how when reports are written against
a dimensional data source (or a dimensionally modeled relational schema), a whole new style
of report writing is needed. You can use dimensional functions, slicers, and others. Also,
filtering and zero suppression are done differently. This chapter talks about such options
(as dimensional data sources are becoming popular again).

Chapter 8, Working with Macros, shows you that even though macros are often considered a
framework modeler's tool, they can be used within Report Studio as well. These recipes will
show you some very useful macros around security, string manipulation, and prompting.

Chapter 9, Using Report Studio Efficiently, shows you the Studio options and development
practices to get the best out of Report Studio. It will include discussions about Studio
options, setting time-outs, capturing the real query fired on a database, handling slow
report validation, customizing classes, and so on.

Chapter 10, Working with Active Reports, introduces you to a new and powerful tool available
in IBM Cognos 10 Report Studio called Active Reports. Active Reports allows you to create
highly interactive and easy-to-use reports. You will learn some techniques that will change
the way your reports look.

Chapter 11, Charts and New Chart Features, shows you how to use advanced features
in charts available in IBM Cognos Report Studio. These features are based on the new
charting engine that was introduced in IBM Cognos Version 10.

Chapter 12, More Useful Recipes, is an assorted platter of useful recipes, meant to show
more workarounds, tricks, and techniques.

Chapter 13, Best Practices, shows you how to achieve code commenting, version controlling,
regression testing, and so on. It will also show you some useful practices you should cultivate
as standard during development.

Preface

3

Appendix, Recommendations and References, covers topics that are very useful for a Cognos
report developer such as version controlling, Cognos mash-up service, and Cognos Go Office.

What you need for this book
IBM Cognos Report Studio 10 (10.1 to 10.2) or any later version.

Who this book is for
If you are a Business Intelligence or MIS Developer (programmer) working on Cognos Report
Studio who wants to author impressive reports by putting to use what this tool has to offer,
this book is for you. You could also be a Business Analyst or Power User who authors your
own reports and who wants to look beyond the conventional features of Report Studio 10.

This book assumes that you can do basic report authoring, are aware of the Cognos
architecture, and are familiar with Studio.

Conventions
In this book, you will find a number of styles of text that distinguish between different kinds of
information. Here are some examples of these styles, and an explanation of their meaning.

Code words in text are shown as follows: "We can include other contexts through the use of
the include directive".

A block of code is set as follows:

<script>
function img2txt(img) {
txt = img.alt;
img.parentNode.innerHTML=txt;}
</script>

When we wish to draw your attention to a particular part of a code block, the relevant lines or
items are set in bold:

<script>
function img2txt(img) {
txt = img.alt;
img.parentNode.innerHTML=txt;}
</script>

New terms and important words are shown in bold. Words that you see on the screen, in
menus or dialog boxes for example, appear in the text like this: "Clicking on the Next button
moves you to the next screen".

Preface

4

Warnings or important notes appear in a box like this.

Tips and tricks appear like this.

Reader feedback
Feedback from our readers is always welcome. Let us know what you think about
this book—what you liked or may have disliked. Reader feedback is important for
us to develop titles that you really get the most out of.

To send us general feedback, simply send an e-mail to feedback@packtpub.com,
and mention the book title via the subject of your message.

If there is a book that you need and would like to see us publish, please send us a note in
the SUGGEST A TITLE form on www.packtpub.com or e-mail suggest@packtpub.com.

If there is a topic that you have expertise in and you are interested in either writing or
contributing to a book on, see our author guide on www.packtpub.com/authors.

Customer support
Now that you are the proud owner of a Packt book, we have a number of things to help you to
get the most from your purchase.

Errata
Although we have taken every care to ensure the accuracy of our content, mistakes
do happen. If you find a mistake in one of our books—maybe a mistake in the text or
the code—we would be grateful if you would report this to us. By doing so, you can save
other readers from frustration and help us improve subsequent versions of this book. If
you find any errata, please report them by visiting http://www.packtpub.com/support,
selecting your book, clicking on the let us know link, and entering the details of your
errata. Once your errata are verified, your submission will be accepted and the errata
will be uploaded on our website, or added to any list of existing errata, under the
Errata section of that title. Any existing errata can be viewed by selecting your title
from http://www.packtpub.com/support.

Preface

5

Piracy
Piracy of copyright material on the Internet is an ongoing problem across all media. At Packt,
we take the protection of our copyright and licenses very seriously. If you come across any
illegal copies of our works, in any form, on the Internet, please provide us with the location
address or website name immediately so that we can pursue a remedy.

Please contact us at copyright@packtpub.com with a link to the suspected pirated material.

We appreciate your help in protecting our authors, and our ability to bring you valuable content.

Questions
You can contact us at questions@packtpub.com if you are having a problem with any
aspect of the book, and we will do our best to address it.

1
Report Authoring

Basic Concepts

In this chapter, we will cover the following:

 f Summary filters and detail filters

 f Sorting grouped values

 f Aggregation and rollup aggregation

 f Implementing if-then-else in filters

 f Formatting data – dates, numbers, and percentages

 f Creating sections

 f Hiding columns in crosstabs

 f Prompts – display value versus use value

Introduction
In this chapter, we will cover some fundamental techniques that will be used in your
day-to-day life as a Report Studio author. In each recipe, we will take a real-life example
and see how it can be accomplished. At the end of the chapter, you will learn several
concepts and ideas which you can mix-and-match to build complex reports. Though this
chapter is called Report Authoring Basic Concepts, it is not a beginner's guide or a
manual. It expects the following:

 f You are familiar with the Report Studio environment, components, and terminologies

 f You know how to add items on the report page and open various explorers and panes

 f You can locate the properties window and know how to test run the report

Report Authoring Basic Concepts

8

Based on my personal experience, I will recommend this chapter to new developers with two
days to two months of experience. If you have more experience with Report Studio, you might
want to jump to the next chapter.

In the most raw terminology, a report is a bunch of rows and columns. The aim is to extract
the right rows and columns from the database and present them to the users. The selection
of columns drive what information is shown in the report, and the selection of rows narrow the
report to a specific purpose and makes it meaningful. The selection of rows is controlled by
filters. Report Studio provides three types of filtering: detail, summary, and slicer. Slicers are
used with dimensional models and will be covered in a later chapter (Chapter 7, Working with
Dimensional Models). In the first recipe of this chapter, we will cover when and why to use the
detail and summary filters.

Once we get the correct set of rows by applying the filters, the next step is to present the rows
in the most business-friendly manner. Grouping and ordering plays an important role in this.
The second recipe will introduce you to the sorting technique for grouped reports.

With grouped reports, we often need to produce subtotals and totals. There are various types
of aggregation possible. For example, average, total, count, and so on. Sometimes, the nature
of business demands complex aggregation as well. In the third recipe, you will learn how to
introduce aggregation without increasing the length of the query. You will also learn how to
achieve different aggregation for subtotals and totals.

The fourth recipe will build upon the filtering concept you have learnt earlier. It will talk about
implementing the if-then-else logic in filters. Then we will see some techniques on data
formatting, creating sections in a report, and hiding a column in a crosstab.

Finally, the eighth and last recipe of this chapter will show you how to use prompt's Use Value
and Display Value properties to achieve better performing queries.

The examples used in all the recipes are based on the GO Data Warehouse (query)
package that is supplied with IBM Cognos 10.1.1 installation. These recipe samples can be
downloaded from the Packt Publishing website. They use the relational schema from the
Sales and Marketing (query) / Sales (query) namespace.

The screenshots used throughout this book are taken from Cognos Version 10.1.1 and 10.2.

Chapter 1

9

Summary filters and detail filters
Business owners need to see the sales quantity of their product lines to plan their strategy.
They want to concentrate only on the highest selling product for each product line. They
would also like the facility to select only those orders that are shipped in a particular month
for this analysis.

In this recipe, we will create a list report with product line, product name, and quantity as
columns. We will also create an optional filter on the Shipment Month Key. Also, we will
apply correct filtering to bring up only the top selling product per product line.

Getting ready
Create a new list report based on the GO Data Warehouse (query) package. From the Sales
(query) namespace, bring up Products / Product line, Products/Product, and Sales fact /
Quantity as columns, the way it is shown in the following screenshot:

How to do it...
Here we want to create a list report that shows product line, product name, and quantity, and
we want to create an optional filter on Shipment Month. The report should also bring up only
the top selling product per product line. In order to achieve this, perform the following steps:

1. We will start by adding the optional filter on Shipment Month. To do that, click
anywhere on the list report on the Report page. Then, click on Filters from
the toolbar.

Report Authoring Basic Concepts

10

2. In the Filters dialog box, add a new detail filter. In the Create Filter screen,
select Advanced and then click on OK as shown in the following screenshot:

3. By selecting Advanced, we will be able to filter the data based on the fields that
are not part of our list table like the Month Key in our example as you will see in
the next step.

4. Define the filter as follows:
[Sales (query)].[Time (ship date)].[Month key (ship date)]
= ?ShipMonth?

5. Validate the filter and then click on OK.

6. Set the usage to Optional as shown in the following screenshot:

Chapter 1

11

7. Now we will add a filter to bring only the highest sold product per product line.
To achieve this, select Product line and Product (press Ctrl and select the
columns) and click on the group button from the toolbar. This will create a
grouping as shown in the following screenshot:

8. Now select the list and click on the filter button again and select Edit Filters. This
time go to the Summary Filters tab and add a new filter. In the Create Filter screen,
select Advanced and then click on OK.

9. Define the filter as follows:
[Quantity] = maximum([Quantity] for [Product line]).

10. Set usage to Required and set the scope to Product as shown in the
following screenshot:

11. Now run the report to test the functionality. You can enter 200401 as the Month Key
as that has data in the Cognos supplied sample.

Report Authoring Basic Concepts

12

How it works...
Report Studio allows you to define two types of filters. Both work at different levels of
granularity and hence have different applications.

The detail filter
The detail filter works at the lowest level of granularity in a selected cluster of objects. In
our example, this grain is the Sales entries stored in Sales fact. By putting a detail filter
on Shipment Month, we are making sure that only those sales entries which fall within the
selected month are pulled out.

The summary filter
In order to achieve the highest sold product per product line, we need to consider the
aggregated sales quantity for the products.

If we put a detail filter on quantity, it will work at sales entry level. You can try putting a detail
filter of [Quantity] = maximum([Quantity] for [Product line]) and you will see
that it gives incorrect results.

So, we need to put a summary filter here. In order to let the query engine know that we are
interested in filtering sales aggregated at product level, we need to set the SCOPE to Product.
This makes the query engine calculate [Quantity] at product level and then allows only
those products where the value matches maximum([Quantity] for [Product line]).

There's more...
When you define multiple levels of grouping, you can easily change the scope of summary
filters to decide the grain of filtering.

For example, if you need to show only those products whose sales are more than 1000 and
only those product lines whose sales are more than 25000, you can quickly put two summary
filters for code with the correct Scope setting.

Before/after aggregation
The detail filter can also be set to apply after aggregation (by changing the application
property). However, I think this kills the logic of the detail filter. Also, there is no control on
the grain at which the filter will apply. Hence, Cognos sets it to before aggregation by default,
which is the most natural usage of the detail filter.

Chapter 1

13

See also
 f The Implementing if-then-else in filtering recipe

Sorting grouped values
The output of the previous recipe brings the right information back on the screen. It filters
the rows correctly and shows the highest selling product per product line for the selected
shipment month.

For better representation and to highlight the best-selling product lines, we need to sort the
product lines in descending order of quantity.

Getting ready
Open the report created in the previous recipe in Cognos Report Studio for
further amendments.

How to do it...
In the report created in the previous recipe, we managed to show data filtered by the
shipment month. To improve the reports look and feel, we will sort the output to highlight
the best-selling products. To start this, perform the following steps:

1. Open the report in Cognos Report Studio.

2. Select the Quantity column.

3. Click on the Sort button from the toolbar and choose Sort Descending.

4. Run the report to check if sorting is working. You will notice that sorting is
not working.

5. Now go back to Report Studio, select Quantity, and click on the Sort button again.
This time choose Edit Layout Sorting under the Other Sort Options header.

Report Authoring Basic Concepts

14

6. Expand the tree for Product line. Drag Quantity from Detail Sort List to Sort List
under Product line as shown in the following screenshot:

7. Click on the OK button and test the report. This time the rows are sorted in
descending order of Quantity as required.

How it works...
The sort option by default works at the detailed level. This means the non-grouped items are
sorted by the specified criteria within their own groups.

Here we want to sort the product lines that are grouped (not the detailed items). In order to
sort the groups, we need to define a more advanced sorting using the Edit Layout Sorting
options shown in this recipe.

There's more...
You can also define sorting for the whole list report from the Edit Layout Sorting dialog box.
You can use different items and ordering for different groups and details.

You can also choose to sort certain groups by the data items that are not shown in the report.
You need to bring only those items from source (model) to the query, and you will be able to
pick it in the sorting dialog.

Chapter 1

15

Aggregation and rollup aggregation
Business owners want to see the unit cost of every product. They also want the entries to be
grouped by product line and see the highest unit cost for each product line. At the end of the
report, they want to see the average unit cost for the whole range.

Getting ready
Create a simple list report with Products / Product line, Products/Product, and Sales fact /
Unit cost as columns.

How to do it...
In this recipe, we want to examine how to aggregate the data and what is meant by rollup
aggregation. Using the new report that you have created, this is how we are going to start
this recipe:

1. We will start by examining the Unit cost column. Click on this column and check
the Aggregate Function property.

2. Set this property to Average.

3. Add grouping for Product line and Product by selecting those columns and then
clicking on the GROUP button from the toolbar.

4. Click on the Unit cost column and then click on the Summarize button from the
toolbar. Select the Total option from the list.

5. Now, again click on the Summarize button and choose the Average option as shown
in the following screenshot:

Report Authoring Basic Concepts

16

6. The previous step will create footers as shown in the following screenshot:

7. Now delete the line with the <Average (Unit cost)> measure from Product line.
Similarly, delete the line with the <Unit cost> measure from Summary. The report
should look like the following screenshot:

8. Click on the Unit cost column and change its Rollup Aggregate Function property
to Maximum.

9. Run the report to test it.

Chapter 1

17

How it works...
In this recipe, we have seen two properties of the data items related to aggregation of
the values.

The aggregation property
We first examined the aggregation property of unit cost and ensured that it was set to
average. Remember that the unit cost here comes from the sales table. The grain of this table
is sales entries or orders. This means there will be many entries for each product and their
unit cost will repeat.

We want to show only one entry for each product and the unit cost needs to be rolled up
correctly. The aggregation property determines what value is shown for unit cost when
calculated at product level. If it is set to Total, it will wrongly add up the unit costs for
each sales entry. Hence, we are setting it to Average. It can be set to Minimum or
Maximum depending on business requirements.

The rollup aggregation property
In order to show the maximum unit cost for product type, we create an aggregate type of
footer in step 4 and set the Rollup Aggregation to Maximum in step 8.

Here we could have directly selected Maximum from the Summarize drop-
down toolbox. But that creates a new data item called Maximum (Unit Cost).
Instead, we ask Cognos to aggregate the number in the footer and drive the
type by rollup aggregation property. This will reduce one data item in query
subject and native SQL.

Multiple aggregation
We also need to show the overall average at the bottom. For this we have to create a new data
item. Hence, we select unit cost and create an Average type of aggregation in step 5. This
calculates the Average (Unit Cost) and places it on the product line and in the overall footer.

We then deleted the aggregations that are not required in step 7.

There's more...
The rollup aggregation of any item is important only when you create the aggregation of
Aggregate type. When it is set to automatic, Cognos will decide the function based on the
data type, which is not preferred.

It is good practice to always set the aggregation and rollup aggregation to a meaningful
function rather than leaving them as automatic.

Report Authoring Basic Concepts

18

Implementing if-then-else in filters
Business owners want to see the sales quantity by order methods. However, for the Sales
Visit type of order method, they want a facility to select the retailer.

Therefore, the report should show quantity by order methods. For the order methods other
than Sales Visit, the report should consider all the retailers. For Sales Visit orders, it should
filter on the selected retailer.

Getting ready
Create a simple list report with Order method / Order method type and Sales fact / Quantity
as columns. Group by Order method to get one row per method and set the Aggregation for
quantity to Total.

How to do it...
In this recipe, we need to create a filter that will be used to select the retailer if the Order
method is Sales Visit. We will check what will happen if we use the if then else
construction inside the filter and how to overcome any problems with the following steps:

1. Here we need to apply the retailer filter only if Order method is Sales Visit.
So, we start by adding a new detail filter.

2. Define the filter as follows:
if ([Order method type]='Sales visit') then ([Sales (query)].
[Retailers].[Retailer name] = ?SalesVisitRetailer?).

3. Validate the report. You will find multiple error messages.

4. Now change the filter definition to:
(([Order method type]='Sales visit') and ([Sales (query)].
[Retailers].[Retailer name] = ?SalesVisitRetailer?)) or ([Order
method type]<>'Sales visit').

5. Validate the report and it should be successful.

6. Run the report and test the data.

How it works...
The if else construct works fine when it is used in data expression. However, when we use
it in a filter, Cognos often doesn't like it. It is strange because the filter is parsed and validated
fine in the expression window and if else is a valid construct.

Chapter 1

19

The workaround for this problem is to use and...or clauses as shown in this recipe. The
if condition and corresponding action item are joined with the and clause. The else part
is taken care of by the or operations with the reverse condition (in our example, Order
Method <> 'Sales Visit').

There's more...
You need not use both and and or clauses all the time. The filtering in this example can also
be achieved by this expression:

-([Sales (query)].[Retailers].[Retailer name] = ?SalesVisitRetailer?)

or

([Order method]<>'Sales visit')

Depending on the requirement, you need to use only or, only and, or the combination of
and...or.

Make sure that you cover all the possibilities.

Formatting data – dates, numbers, and
percentages

Virtually all reports involve displaying numerical information. It is very important to correctly
format the numbers. In this recipe, we will create a report which formats dates, numbers,
and percentages.

Date transformation and formatting are important in business reports. We will see two ways
of displaying MONTH-YEAR from the Shipment Date Key. We will apply some formatting to a
numeric column and will also configure a ratio to be displayed as a percentage.

Getting ready
Create a simple list report with Products / Product line, Products / Product type, and Time
(ship date) / Date (ship date) as columns from the Sales (query) namespace.

Also, add Quantity, Unit price, and Unit cost from the Sales fact Query Subject.

Create a grouping on Product line and Product type.

Report Authoring Basic Concepts

20

How to do it...
In this recipe, we will check how to apply different formats on the data items.

1. We will start by formatting the date column we have (check in Cognos 8).

2. Select the Time (ship date) / Date (ship date) column and open Data Format from
the Properties pane. Open the Data Format dialog box by clicking on the Browse
button next to the Data Format property.

3. Choose the format type Date, set Date Style to Medium, and set Display Days to No,
as shown in the following screenshot:

4. Now select the Quantity column in the report. Choose Data Format from property
and open the dialog box again.

5. This time select Number as the type and set the different properties as required. In
our example recipe, we will set the Number of Decimal Points to 2 and use brackets
() as a Negative Sign Symbol.

6. Finally, we will add the ratio calculation to the report. For that, add a new query
calculation and define it as follows:
[Unit price]/[Unit cost]

Chapter 1

21

7. Select this column and from the Data Format property dialog box, set it as Percent.
Choose % as the Percentage Symbol and set the Number of Decimal Places to 2.
Also, set the Divide by Zero Characters to N/A.

8. Run the report to test it.

How it works...
In this recipe, we are trying multiple techniques. We are checking how dates can be formatted
to hide certain details (for example, days) and how to change the separator. Also, we have
tested formatting options for numbers and the percentage.

Date format
Here, we started by setting the data format for the Month Year column as date for display
purposes. We have set the display days to No as we only want to display MONTH-YEAR.

Numerical format
This is straightforward. The quantity column is displayed with two decimal points and negative
numbers are displayed in brackets as this is what we have set the data formatting to.

The % margin
The ratio of unit price to unit cost is calculated by this item. Without formatting, the value
is simply the result of a division operation. By setting the data format to Percent, Cognos
automatically multiplies the ratio by 100 and displays it as a percentage.

There's more...
Please note that ideally the warehouse stores a calendar table with a Date type of field; this
is made available through the Framework model. Also, we are assuming here that you need to
see the shipment month. So, you want to see the MONTH-YEAR format only and we are hiding
the days.

Using the data format options, you can do a lot of things. Assume that you don't have a
date field in your data source but instead you have just a date key and you want to display the
year and month as we did in our recipe. For that, create a new query calculation and use the
following expression:

[Sales (query)].[Time (ship date)].[Day key (ship date)]/10000

Now set the Data Format to Number with the following options:

 f Set the No of decimal places field to 2
 f Set the Decimal separator to -
 f Set Use thousand separator to No

Report Authoring Basic Concepts

22

Run the report to examine the output. You will see that we have gotten rid of the last two
digits from the day key and the year part is separated from the month part by a hyphen.
This is not truly converted to MONTH-YEAR, but conveys the information as shown in the
following screenshot:

The advantage here is that the numerical operation is faster than converting the numerical
key to DATE. We can use similar techniques to cosmetically achieve the required result.

Creating sections
Users want to see the details of orders. They would like to see the order number and then a
small table showing the details (product name, promotion, quantity, and unit sell price) within
each order.

Getting ready
Create a simple list report with Sales order / Order number, Products / Product, Sales fact /
Quantity, and Sales fact / Unit sale price as columns.

Chapter 1

23

How to do it...
Creating sections in a report is helpful to show a data item as the heading of a section. When
you run the report, separate sections appear for each value. There is a way to reconstruct the
report, and this is how to do it:

1. Click on the Order number column. Hit the Section button on the toolbar as shown in
the following screenshot:

2. You will see that Report Studio automatically creates a header for Order number and
moves it out of the list.

3. Notice that the Order number field is now grouped as shown in the
following screenshot:

4. Run the report to test it.

Report Authoring Basic Concepts

24

How it works...
The information we are trying to show in this report can also be achieved by normal
grouping on order number. That will bring all the related records together. We can also
set an appropriate group/level span and sorting for better appearance.

However, in this recipe, I want to introduce another feature of Report Studio called section.

When you create a section on a column, Report Studio automatically does the following:

 f It creates a new list object and moves the current report object (in our case, the
existing list) inside that. This is report nesting. Both the inner and outer objects use
the same query.

 f It creates grouping on the column selected for section, which is Order number in this
case. It also creates a group header for that item and removes it from the inner list.

 f It formats the outer list appropriately. For example, hiding the column title.

There's more...
Some of the advantages of creating sections are as follows:

1. As mentioned earlier, Report Studio does a lot of the work for you and gives you
a report that looks more presentable. It makes the information more readable by
clearly differentiating different entities; in our case, different orders. You will see
mini-lists or tables, one for each Order number, as shown in the following screenshot:

2. As the outer and inner queries are the same, there is no maintenance overhead.

Chapter 1

25

See also
 f The Creating a nested report – defining the master-detail relationship recipe in

Chapter 2, Advanced Report Authoring

Hiding columns in crosstabs
Users want to see sales figures by periods and order method. We need to show monthly
sales and the yearly total sales. The year should be shown in the Year total row and not
as a separate column.

Getting ready
Create a crosstab report with Sales fact / Quantity as a measure. Drag Time/Year and Month
on rows, Order method / Order method type on column as shown in the following screenshot,
and create aggregation on measure:

Add a total for the Month and Order method type then define appropriate sorting if required.

Report Authoring Basic Concepts

26

How to do it...
In this recipe, we want to hide the year from the crosstab and show it only in the report as a
year total. To do this, perform the following steps:

1. First, let's identify the issue. If you run the report as it is, you will notice that the year
is shown to the left of the months. This consumes one extra column. Also, the yearly
total doesn't have a user friendly title as shown in the following screenshot:

2. We will start by updating the title for the yearly total row. Select the <Total(Month)>
crosstab node. Change its Source Type to Data Item Value instead of Data Item
Label and choose Year as the Data Item Value.

Chapter 1

27

3. Run the report and check that the yearly total is shown with the appropriate year as
shown in the following screenshot:

4. Now we need to get rid of the year column on the left edge. For that, click on the
Unlock button in the Report Studio toolbar. The icon should change to an open
lock (unlocked).

5. Now select the <#Year#> text item (not the whole cell) and delete it.

6. Select the empty crosstab node left after deleting the text. Change its Padding to 0
pixels in all directions.

Report Authoring Basic Concepts

28

7. Run the report and you will see the following screenshot:

As you can see the year column on the left is now successfully hidden.

How it works...
When we want to hide an object in Report Studio, we often set its Box Type property to None.
However, in this case, that was not possible.

Chapter 1

29

Try setting the Box Type of the year column to None and run the report. It will look like the
following screenshot:

As you can see, the cells have shifted to the left leaving the titles out of sync. This is
most often the problem when Report Studio creates some merged cells (in our case,
for the aggregations).

The solution to this is to format the column in such a way that it is hidden in the report as we
have seen in this recipe.

There's more...
This solution works best in HTML output. The Excel output still has a column on the left with
no data in it.

You might need to define the background color and bordering as well so as to blend the empty
column with either the page background on the left or the month column on the right.

Report Authoring Basic Concepts

30

Prompts – display value versus use value
In order to achieve the best performance with our queries, we need to perform filtering on the
numerical key columns. However, the display values in the prompts need to be textual and
user friendly.

In this recipe, we will create a filter that displays the product line list (textual values) but
actually filters on the numerical codes (Product_Line_Code).

Getting ready
Create a simple list report with Products/Product and Sales fact / Quantity as columns.

How to do it...
In this recipe, we will create a prompt and examine the differences between using the display
value and the use value.

1. Open Page Explorer and click on the Prompt Pages folder. Drag a new page from
Toolbox under Prompt Pages.

2. Double-click on the newly created prompt page to open it for editing.

3. From the toolbox, drag Value Prompt to the prompt page. This will open a wizard.

4. Set the prompt name to ProductLine and then click on Next as shown in the
following screenshot:

Chapter 1

31

5. Keep the Create a parameterized filter option checked. For Package item, choose
Sales (query) / Products / Product line code. Click on Next as shown in the
following screenshot:

6. Keep the Create new query option checked. Give the query name as
promptProductLine.

7. Under Value to display, select Sales (query) / Products / Product line.

8. Click on the Finish button. Run the report to test it.

Report Authoring Basic Concepts

32

How it works...
When you drag a prompt object from Toolbox, Report Studio launches the prompt wizard.

In the first step, you choose the parameter to be connected to the prompt. It might be an
existing parameter (defined in the query filter or framework model) or a new one. In this
recipe, we chose to create a new one.

Then, you are asked whether you want to create a filter. If there is already a filter defined, you
can uncheck this option. In our example, we are choosing this option and creating a filter on
Product line code. Please note that we have chosen the numerical key column here. Filtering
on a numerical key column is a standard practice in data warehousing as it improves the
performance of the query and uses the index.

In the next step, Report Studio asks where you want to create a new query for the prompt.
This is the query that will be fired on the database to retrieve prompt values. Here we have
the option to choose a different column for the display value.

In our recipe, we chose Product line as the display value. Product line is the textual or
descriptive column that is user friendly. It has one-to-one mapping with the Product
line code. For example, Camping Equipment has a product line code of 991.

Hence, when we run the report, we see that the prompt is populated by Product line names,
which makes sense to the users. Whereas if you examine the actual query fired on the
database, you will see that filtering happens on the key column; that is, Product line code.

There's more...
You can also check the generated SQL from Report Studio.

In order to do that, navigate to the Tools | Show Generated SQL/MDX option from the menu
as shown in the following screenshot:

Chapter 1

33

It will prompt you to enter a value for the product line code (which is proof that it will be
filtering on the code).

Enter any dummy number and examine the query generated for the report. You will see that
the Product line code (key column) is being filtered for the value you entered.

So, now you know how the prompt display values and use values work.

If you ever need to capture the prompt value selected by the user in expressions
(which you will often need for conditional styling or drill-throughs), you can use the
following two functions:

 f ParamDisplayValue (parameter name): This function returns the textual value which
represents the display value of the prompt. In our example, it will be the product line
that was selected by the user.

 f ParamValue (parameter name): This function returns the numeric value which
represents the use value of the prompt. In our example, it will be the Product
line code for the product line selected by the user.

2
Advanced Report

Authoring

In this chapter, we will cover the following:

 f Adding cascaded prompts

 f Creating a nested report – defining the master-detail relationship

 f Writing back to the database

 f Adding conditional formatting

 f Formatting negative values

 f Playing with conditional styles

 f Using conditional blocks – many reports in one

 f Defining drill-through from crosstab intersection

 f Overriding crosstab intersection drill-through definitions

Introduction
Now as you have implemented the recipes in Chapter 1, Report Authoring Basic Concepts
or read through them, I am confident that we are on the same page about the fundamental
techniques of report authoring.

Now you know how filtering, sorting, and aggregation work. You also know how to apply data
formatting, create sections, and hide columns. You are also now aware of how to add new
prompts and select appropriate options in the prompt wizard.

Advanced Report Authoring

36

Based on this understanding, we will now move on to some advanced topics; including
cascaded prompts, nested reports, and conditional blocks. We will also examine some
techniques around drill-through links. These will enable you to create professional reports
as required in the current industrial environment.

Adding cascaded prompts
Business owners want to see sales made by employees. They also want the facility to limit the
report to a certain region, country, or employee.

When they select a region, they would like the country pick-list to automatically reduce to the
countries falling in that region. Similarly, the employee pick-list should also reduce when they
pick a country.

Getting ready
Create a simple list report with Employee name (from the Employee by region query subject)
and Quantity (from Sales fact).

Define appropriate grouping and sorting for Employee name and ensure that aggregations for
Quantity are correctly set.

How to do it...
In this recipe we will build three prompts for Region, Country, and Employee. We will create a
relationship between these prompts by making them cascading prompts. So if you change the
value selected in one prompt, the data in the other prompts should change accordingly. To do
this, perform the following steps:

1. We will start by creating detailed filters on the report query. Select the list report and
open the filters dialog by clicking on the Filters button and then click on Edit Filters.

2. Add three detailed filters as follows:

 � [Employee name]=?Employee?

 � [Sales (query)].[Employee by region].[Country]=?Country?

 � [Sales (query)].[Employee by region].[Branch
region]=?Region?

Chapter 2

37

3. Define all filters as Optional as shown in the following screenshot:

4. Now create a new prompt page. We will start by adding a prompt for Region.

5. Drag a new value prompt. In the prompt wizard, choose the existing parameter
Region for it. Choose to create a new query called Regions for this parameter.

6. Click on the Finish button.

7. Now add another value prompt. Choose the existing parameter Country for this, and
create a new query called Countries. On the same page, choose Region under the
Cascading source as shown in the following screenshot:

Advanced Report Authoring

38

8. Similarly, add the third and last value prompt for employee. Choose Employee as a
parameter, Employees as the query name, and Country for the Cascading source.

9. Select the Region prompt and set its Auto-Submit property to Yes. Do the same for
the Countries prompt.

10. Run the report to test it.

How it works...
In our case, users may run the report for the whole company, select a particular region, select
a region and country combination, or go all the way down to employees. We want to allow
them to submit the selections at any stage. That is why we created three filters and kept
them all as optional.

Even if it was mandatory for the users to select an employee, we would have kept filters for
country and region. The reason is that one employee might have done sales in different
countries/regions. By keeping those filters, we would ensure that the report fetches data
for that employee for the selected region/country only.

Cascaded source
When we set the cascaded source property, Report Studio ensures two things. Firstly, the
prompt is disabled until the cascaded source is satisfied. Secondly, when re-prompted and
the cascade source is populated, the prompt values are filtered accordingly.

In our case, the Countries prompt remains disabled until a valid value for region is submitted.
Similarly, the employee list is disabled until a valid value is submitted for countries.

There's more...
In step 9, we set the Auto-Submit property to Yes for the prompts.

Auto-Submit
When the Auto-Submit property is set to Yes, the prompt value is automatically submitted
when the user selects one. This enables the dependent prompt to be correctly filtered
and enabled.

In our recipe, Auto-Submit for Region is set to Yes. Hence, when you select a region,
the value is automatically submitted and the Country prompt is enabled with the
correct values populated.

Chapter 2

39

This action can also be performed by a Reprompt button. In that case, Auto-Submit is
not required.

See also
 f The Prompts – display value versus use value recipe in Chapter 1, Report Authoring

Basic Concepts

Creating a nested report – defining the
master-detail relationship

Users want to see product lines, products, and corresponding unit costs. For every product,
they also want to see the trend of sales over the last year.

We need to produce a list report with the required information and nest a line chart within it to
show the sales trend.

Getting ready
Create a simple list report based on the Sales (query) namespace. Pull Products / Product
line, Products/Product and Sales fact / Unit cost in the list.

How to do it...
To complete this recipe, we need to create a relationship between the list report created and
a chart report that will be embedded into it. We can do this by defining a master-detail link
between them.

1. We already have a list report that shows the product lines, products, and
corresponding unit costs. Please make sure that appropriate sorting and
aggregations are applied to the columns.

2. Now we will add a nested Chart object to show the sales trend for each product.

Advanced Report Authoring

40

3. Drag a new Chart object from the Toolbox pane into the report as a column as shown
in the following screenshot:

4. Choose an appropriate chart type. In this recipe, we will choose Line with Markers.

5. From the source pane, drag Quantity from Sales fact into the chart as the
Default measure (y-axis). Drag Month key from the Time dimension under
Categories (x-axis) and Product from the Products dimension under Series
as shown in the following screenshot:

Chapter 2

41

Please note that we are using the month key here in order to
show the monthly figures in the correct order. Later on you can
use a category label to show month names. Directly pulling the
month name results in alphabetic sorting is an incorrect trend.

6. Now click anywhere on the chart and choose Data / Master Detail Relationships
from the menu bar.

7. Create a new link and connect Product items from both the queries as shown in the
following screenshot:

8. Click on the OK button to come back on the report page. Now select the Y1 Axis of
the chart by clicking on it.

9. Change its Use Same Range for All Instances property to No.

10. Now click on the chart and click on the Filter button from the toolbar and then click
on Edit Filters.

Advanced Report Authoring

42

11. Define a detailed filter on Year from the Time dimension as required. In this recipe,
we will hard code it to 2012. So, the filter is defined as [Sales (query)].
[Time].[Year] = 2012.

Though in practical cases, you would have to filter for year, rather than hard-coding.

12. Run the report to test it.

13. Update the chart properties (size, marker, color, and so on) for better presentation as
shown in the following screenshot:

How it works...
Cognos Report Studio allows one report object to be nested within another list report. In the
previous recipe, we saw that the Report Studio automatically creates nesting for us. In this
recipe, we manually created nesting for finer control.

Chapter 2

43

The master-detail relationship
We need to define this relationship in the following cases:

 f When outer and inner report objects use different queries

 f For any nesting other than a list within a list

In order to generate the report, Cognos first fires the master query on the database to retrieve
the records. Then for each record, it fires the detail query with the filtering as defined in the
master-detail relationship.

Hence, the detail query is executed multiple times, each time with different filtering.

As it has to retrieve very small amounts of information at a time, a page of output is returned
very quickly. This is particularly useful when the report is accessed interactively.

In Report Studio, you can turn on an option from VIEW Menu | Visual Aid |
Show Master Detail Relationships.
This will highlight the data containers that have master-detail relationships
with an icon like this: . By double-clicking on the icon, you can quickly open
the relationship for viewing and editing.

There's more...
By using separate queries for the outer and inner report object in nesting, we can have
more control on what information is retrieved. In this example, we want to show a sales
trend (chart) only for one year—we hard coded it to 2004. Hence, the chart query needs
to be filtered on year.

However, the outer query (the list of product lines and products) does not need this filtering.

As you can see in the report output, there are some rows with no corresponding graph. For
example, Personal Accessories / Auto Pilot. This means there was no selling of this product
in the year 2004. If we had used the same query for the list and the chart, this row would
have been filtered out resulting in loss of information (product and unit cost) to the users.

See also
We are going to explore more chart features later when we talk about the new charts in IBM
Cognos 10 in Chapter 11, Charts and New Chart Features.

Advanced Report Authoring

44

Writing back to the database
Writing back to the database is perhaps the most frequently requested functionality by
business users—writing some notes or comments back to database, for a particular entry on
the report. Though there is no direct functionality provided in Cognos Report Studio for this, it
is still possible to achieve it by putting together multiple tools. This recipe will show you how to
do that.

The business wants to see sales figures by products. They then want to write some comments
for the products from the same interface. The comments need to be stored in the database
for future retrieval and updating.

You will need access on the backend database and Framework Manager for this recipe.

As we are only concentrating on Report Studio in this book, we will not
cover the Framework Manager options in depth. The power users and
Report Studio developers need not be masters in Framework Modeling,
but they are expected to have sufficient knowledge of how it works. There
is often a Framework Manager Specialist or modeler in the team who
controls the overall schema, implements the business rules, and defines
hierarchies in the model.

Getting ready
Create a simple list report with Product key, Product, and Sales Quantity columns. Create
appropriate sorting, aggregation, and prompts.

How to do it...
To complete this recipe, we will use a stored procedure to do the write back action to the
database. This is illustrated in the following steps:

1. We will start by creating a table in the database to store the comments entered by
users. For that, open your database client and create a table similar to the one shown
later. In this recipe, we are using a simple table created in an MS SQL Server 2008
database using the SQL Server Management Studio. The table is defined as follows:
CREATE TABLE [dbo].[ProductComments](
[ProductID] [int] NOT NULL,
[Comment] [varchar](255) NULL,

Chapter 2

45

CONSTRAINT [PK_ProductComments] PRIMARY KEY CLUSTERED
(
[ProductID] ASC
)WITH (PAD_INDEX = OFF, STATISTICS_NORECOMPUTE = OFF, IGNORE_
DUP_KEY = OFF, ALLOW_ROW_LOCKS = ON, ALLOW_PAGE_LOCKS = ON) ON
[PRIMARY]
) ON [PRIMARY]

2. After creating the table in step 1 in the backend, we will now write a stored procedure
that will accept product key and comments. It will enter this information in the table
and then return all the product keys and corresponding comments back as shown in
the following code:
CREATE PROCEDURE [dbo].[InsertComment] @ProductID int, @Comments
VARCHAR(255)
AS
BEGIN
IF ((select count(*) from
[dbo].ProductComments
where ProductID = @ProductID) = 0)
INSERT INTO [dbo].ProductComments VALUES (@ProductID,@Comments)
ELSE
UPDATE [dbo].ProductComments
SET Comment = @Comments WHERE ProductID = @ProductID
END
Select ProductID,Comment from [dbo].ProductComments
GO

3. Please ensure that the user account used to access the database from Cognos has
been given the EXECUTE permission on the stored procedure. On SQL Server, you can
do that using the GRANT PERMISSION command.

Advanced Report Authoring

46

4. Now open your Framework Model and import this stored procedure as a Stored
Procedure Query Subject. You need to configure the input parameters as Prompts.
This is shown in the following screenshot:

5. As you can see in the previous screenshot, @ProductID and @Comments are
the stored procedure parameters. They have in mode which means they accept
input. For the values we will be defining prompts so that we can use them inside
the reports.

6. For the parameter @ProductID, click on the Value button. A new pop-up window will
appear that will help you to set the value as you can see in the following screenshot:

Chapter 2

47

7. Click on Insert Macro and define the macro as #prompt('?ProductKey?','inte
ger')#.

8. Repeat the same for the @Comments parameter and define another macro for the
?Comments? parameter as well.

9. Verify the model and publish it.

10. Now, we will create a new report which users will use to insert the comments about
the product. For that start with a new list report.

11. Use the InsertComment stored procedure query subject for this report. Drag Product
ID and Comment columns on this report as shown in the following screenshot:

12. Create a prompt page for this report. Insert a Text Value type of prompt and connect
it to the existing parameter called Comment.

13. Save this report as drill report. We will call it as 2.5 Writing Back to Database
– Drill in this recipe.

Advanced Report Authoring

48

14. Now reopen the first report. Drag a Text Item as a new column on the report and
define the text as Insert Comment as shown in the following screenshot:

15. Create a drill-through from this text column by clicking on the Drill-through icon.
Set Writing Back to Database – Drill as drill target. Check the option of Open
in New Window.

16. Edit the parameter for this drill by clicking on the Edit button.

17. Map the ProductKey parameter to the Product key data item as shown in the
following screenshot:

18. Run the report to test it.

How it works...
Cognos Report Studio on its own cannot perform data manipulation on a database. It cannot
fire DML statements and hence can't write back to the database.

Chapter 2

49

However, Cognos allows reports to execute the Stored Procedure and show the result output
on the report page. For this, we need to import the Stored Procedure as query subject within
Framework Manager. When a report that uses this query subject is run, Cognos executes
the Stored Procedure on the database. We can use this opportunity to perform some DML
operations, for example, inserting or updating rows in tables.

When we import a Stored Procedure into Framework Model, it allows us to define an
expression for every input parameter. In step 3 of this recipe, we defined the parameter
value to be prompts. The prompt parameters, namely ProductKey and Comments then
become visible in the report.

Once we have imported the Stored Procedure in Framework Model, mapped the input
parameter to prompts and published the package, we are ready to start with reports.

We created a report (drill report) to use the Stored Procedure and hence allow users to
insert the comments. In this report, we created a text prompt and linked it to the Comments
parameter. The Product Key is passed from the main report. This way we achieve the
write-back to the database.

After inserting/updating the row, Stored Procedure returns all the records from the comments
table. We show those records in a simple list report to users.

There's more...
This recipe is a very basic example to demonstrate the capability. You can build upon this idea
and perform more sophisticated operations on the database.

Adding conditional formatting
The business wants to see company sales figure by years and quarters. They want to highlight
the entries where sales are below 5,000,000.

We will assume that database provides us the Quarter number and we need to convert that to
words. We will use conditional formatting for that. Also, where sales is below 5 million, the cell
will be shown in red using another conditional variable.

Getting ready
Create a simple list report with Year and Quarter (numeric) columns from the Sales / Time
query subject.

Drag Quantity from Sales fact.

Group by Year and sort by Quarter.

Advanced Report Authoring

50

How to do it...
Conditional formatting is used to enhance the report visualization. Here is how we can define
conditional formatting in the created report:

1. Go to Condition Explorer and click on Variables as shown in the following screenshot:

2. Drag a new string variable from the Toolbox pane. Define the expression as
[Query1].[Quarter (numeric)].

3. Change the name of the variable to Convert_To_Words as shown in the
following screenshot:

Chapter 2

51

4. Add four values for the variable; the numbers 1 to 4.

5. Now add a Boolean variable and define it as [Query1].[Quantity]< < 5000000.

6. Call this variable Show_Red as shown in the following screenshot:

7. Go to the report page and select the Quarter (numeric) column. For the Text Source
Variable property, select Convert_To_Words as the variable and then click on OK.

8. Select the Quantity column and attach Show_Red to the Style Variable property.

Advanced Report Authoring

52

9. Now from Conditional Explorer, iterate through every condition for the different
values of Convert_To_Words and set corresponding text for the Quarter column,
that is, set First Quarter for value 1, and so on.

10. For Show_Red as yes, select the Quantity column and change the background
color to red.

11. Run the report to test the output as shown in the following screenshot:

How it works...
Here we are defining conditional variables to trap the specific conditions and perform required
actions on corresponding rows. There are three types of conditional variables: String, Boolean,
and the report language variable.

The String variable
The String type of variable allows you to define different possible values that the expression
can be evaluated into. You only need to define the values for which you need to define specific
style or text. The rest are taken care of by the Other condition.

The Boolean variable
This variable is useful when the expression only evaluates into true or false and you need to
format the entries accordingly.

Chapter 2

53

The report language variable
This type of variable returns the language in which report is run by the user. You don't need to
define any expression for this type of variable. You simply need to choose the languages for
which you want to perform certain actions (like display titles in the corresponding language,
or show the respective country flag in header).

Here, we have used one variable of String type and one of Boolean type.

There's more...
There are some other important style variables to check out.

The style variable property
By assigning a variable to this property, we can control the styling aspect of the object which
includes font, colors, data format, visibility, and so on.

The text source variable property
By assigning a variable to this property, we can control the text/values being shown for that
object. We can provide static text or a report expression. We can also choose to show value
or label of another data item in the selected object.

In this example, we used this property to display the appropriate quarter name. Please note
that it was possible to achieve the same result by putting a CASE statement in the data
expression. However, the purpose here is to highlight the function of text source variable.

Formatting negative values
Business owners need to see the sales figures by month and their month-on-month difference.

If the difference is negative (fall in sales) then it needs to be shown in red and values need to
be in brackets.

Getting ready
Create a simple list report with Time / Year, Time / Month (numeric), and Sales fact /
Quantity as columns.

Group Year and sort Month (numeric) in ascending order.

Advanced Report Authoring

54

How to do it...
Showing negative values in red and between brackets is a familiar practice for analysts
in tools like Excel. Here are the steps to create the exact same formatting in your reports:

1. Add a new query calculation to the list. Define the expression as running-
difference([Quantity]). Call this item as Running Difference.

2. Open the Data Format properties for this calculation from the Property list.

3. Set the Format type as Number and the Negative Sign Symbol as brackets ()
as shown in the following screenshot:

4. Now go to Condition Explorer and create a new condition variable of Boolean type.
Define the condition as [Query1].[Running Difference] < 0 as shown in the
following screenshot:

Chapter 2

55

5. Call the variable as Show_Red.

6. Now go back to the report page and select the Running Difference column.
Assign the Show_Red variable as Style Variable from the property list.

7. Choose the Yes condition for Show_Red from the conditional explorer. Select the
Running Difference column from the list and open its Font properties.

8. Set the font foreground color to red as shown in the following screenshot:

Advanced Report Authoring

56

9. Click on the OK button. Double-click on the green bar to come out of condition.
Run the report to test it as shown in the following screenshot:

How it works...
One purpose of this recipe is to introduce you to the powerful aggregation functions provided
by Cognos.

Running Difference
The Running Difference function returns difference between value in current row and
previous row. You can also control the scope and level of aggregation.

In this example, we leave the scope and level of aggregation to default.

There are other such functions provided in Report Studio (for example, Running-Maximum,
Running-Count, Running-Total, and so on) which are useful in real life scenarios.

Chapter 2

57

Showing negative values in red and brackets
MS Excel has traditionally been the most popular and widely-used tool for information access.
It is easy to use and gives enough power for the business users to do their analysis. It readily
allows you to display negative numbers in red and brackets, which is a popular choice in the
finance world.

However, under the Data Format options of Report Studio, you can only choose to display the
negative numbers in brackets. You cannot specify to show them in different colors. Hence, we
have to create a conditional variable here and define the foreground color accordingly.

Playing with conditional styles
Assume that the following report needs to be formatted such that quantities below 1.7 million
will be highlighted with red background and those above 2 million should be green. Also, we
need the negative values for Running Difference (month-on-month) to be shown in red and in
brackets as shown in the following screenshot:

As shown in the previous recipe, this would have needed us to define two conditional
variables. Then attach each to the corresponding column as Style variable to define the
styles. With one more such numeric column, the author had to define one more variable and
repeat the exercise. Let's see how the new conditional styling feature solves this problem.

Getting ready
Write a new report similar to the one shown in the previous screenshot.

How to do it...
In this recipe, we are going to examine more ways to enhance the reports look and feel.
To do this:

1. Select the Quantity column on the report page.

2. Open the new Conditional Styles dialog box from the Properties pane. Alternatively,
you can also click on the Conditional Styles button from the toolbar.

Advanced Report Authoring

58

3. Create a new Conditional Style as shown in the following screenshot:

4. Choose Quantity to base the conditions on.

5. Define three values (0, 1.7 million, and 2 million) by hitting the new value button in
the bottom-left corner. This will look like the following screenshot:

Chapter 2

59

6. Also, choose corresponding styles for each range as shown in the previous
screenshot. Give appropriate names, like Quantity colors in this case.

7. Similarly, define the negative values for the Running Difference column to be shown
in red as shown in the following screenshot:

Advanced Report Authoring

60

8. Run the report to test it as shown in the following diagram:

How it works...
With this feature, we can now define styling for any column without explicitly defining the
conditional variable. The styling can be based on the values on the column itself or some
other column.

Also, defining actual formatting (font, color, border, and so on) for different conditions is
now done within one dialog box. This is more author-friendly than traversing through the
conditional variable pane and choosing each condition.

There's more...
The previous example defines very basic value-based range or classification.

You can also choose the Advanced Conditional Style option under this property, which allows
you to define an expression and have better control over conditions than just classifying the
values into ranges.

Chapter 2

61

Using conditional blocks – many reports
in one

The purpose of this recipe is to introduce you to a very useful and powerful control of Report
Studio called conditional blocks.

Users want a report on sales figures. They want the facility to split the numbers by product
lines, periods, or retailer region, any one at a time. For convenience purposes, they don't
want three different reports, instead they are looking for one report with the facility to
choose between the report types.

Getting ready
Create a report with three list objects. Define the list columns as follows:

 f List 1: Products / Product line and Sales fact / Quantity

 f List 2: Time / Year, Time / Month, and Sales fact / Quantity

 f List 3: Retailers / Region and Sales fact / Quantity

Define appropriate grouping, sorting, and aggregation for all the list objects. Make sure that
all objects use different queries as shown in the following screenshot:

Advanced Report Authoring

62

How to do it...
Conditional blocks are very powerful tool that you can make your report very fixable. In this
recipe, we will create three different reports, but using the conditional blocks we will be able
to show them in the same report. The procedure to do this is as follows:

1. We will start by creating a prompt for the report type. Go to Page Explorer and add a
prompt page.

2. Drag a new value prompt object on to the prompt page. Define parameter name as
paramReportType. Do not define any filtering, use value, or display value in the
prompt wizard.

3. Select the value prompt and open Static Choices from its properties.

4. Define three static choices as shown in the following screenshot:

5. Now go to Condition Explorer and create a new String variable. Define it as
ParamValue('paramReportType').

6. Add three values for this variable as BP, BT, and BR. Change the name of the variable
to ReportType.

7. Now go to the report page. Add a new conditional block from the Toolbox pane.

8. Select the conditional block and open the Block Variable dialog from the properties.
Select the ReportType variable from the dropdown and then click on the OK button
as shown in the following screenshot:

Chapter 2

63

9. Now choose BP as the current block from properties. Select the first list object that
shows sales quantity by products. Drag this list into the conditional block. Please note
that you need to use the Ancestor button to select the whole list before dragging it in.

10. Change the current block property of the conditional block to BT. Drag the Sales by
Time list into the block.

11. Repeat the same for BR and the last list object.

12. On the report page header, select the Double click to edit text item. Change its
Source type property to Report expression.

13. Define the expression as ParamDisplayValue('paramReportType').

14. Run the report to test it.

How it works...
We saw how to define conditional variables and use them as style variables in the Adding
conditional formatting recipe. In this recipe, we are checking how conditional variables can
be used with the conditional blocks.

A conditional block is a useful component that allows you to show certain objects in a certain
condition. While condition styling and rendering are for finer control, conditional blocks are
useful for coarse actions like showing/hiding whole object and switching between objects.

Advanced Report Authoring

64

Here, all list objects use different queries. So, each query subject will have only the required
columns. Depending on the prompt selection, only one of those queries will be fired and will
bring back appropriate columns.

It was possible to have just one list object and one query subject with all columns, and hide/
show columns are required. This will be done using conditional styling that you have already
learnt. However, the purpose of this recipe is to introduce you to conditional blocks. Now you
can be creative and use the conditional blocks in real life scenarios. Please note that we
checked for the use value in condition variable (paramValue) whereas we showed the
display value (paramDisplayValue) in header. This topic was discussed in Chapter 1,
Report Authoring Basic Concepts.

There's more...
It is good practice to define something to be displayed for the Other condition of the
conditional variable. Do not keep the block empty for any condition, unless that is
the requirement.

Conditional block finds its application in many scenarios. For example, showing certain
warnings like No records found or displaying summary or detailed report depending on
the user's choice.

Defining drill-through from crosstab
intersection

We have a crosstab report that shows sales quantity by month and order method. We need to
create drill-through links from months and sales values.

Getting ready
Create two target reports for the drill-throughs. One should take only Month as parameter.
The other should take Month and Order method type. These reports will be referred to as
Drill-1 and Drill-2 reports respectively.

Create a simple crosstab report to be used as main report. Pull Time/Month on rows,
Order method / Order method type on columns, and Sales fact / Quantity as the measure.

Chapter 2

65

How to do it...
In this recipe, you will see how to create a drill-through from a crosstab intersection to another
report. To do this:

1. Select the Month item placed on crosstab rows. Click on the drill-through definition
button from the toolbar.

2. This opens the drill-through definitions dialog. Create a new definition. Select Drill-1
as Target Report. Map the month parameter with the Month data item as shown in
the following screenshot:

3. Now click on the unlock button from the toolbar to unlock the items.

4. Select the text item from the crosstab intersection. Hit the drill-through button again.

5. Create a drill link to Drill-2.

6. Run the report and test both the drill links.

Advanced Report Authoring

66

How it works...
You will notice that when we created the drill-through from row titles (Month), we didn't have
to unlock the items. Whereas, for the intersection, we had to unlock them.

Now try one thing. Lock the report objects again and select the crosstab intersection. Try to
create drill-through now. You will see that the drill-through definition button is disabled.

For some unknown reason, Report Studio doesn't allow you to create drill-through from
crosstab intersection. You need to select the Fact cells class or the Text item within the
intersection. By unlocking the object, we select the text item within the intersection and
create a link from there.

Another way is to right-click on the intersection and to choose Select Fact cells. This will
enable the drill-through button and let you define one.

Overriding crosstab intersection
drill-through definitions

Let us consider an extension of the last recipe. Let us say the users want to see a
discontinuous crosstab as main report. Instead of just Order method type as a
column, we need to display Order method type and Product line as columns.

The rows display Month. The measure is sales quantity.

The drill-through from the intersection has to go to the appropriate report depending on
whether the column is Product line or Order method type.

Getting ready
Create a new drill-through target that accepts Month and Product line as parameters.
We will call it Drill-3 from now on.

For the main report, we will use the same crosstab report as in the previous recipe.

How to do it...
In the previous recipe, we saw how to create a drill-through from a crosstab intersection to
another report. In this recipe, we want to make it more complex. The drill-through line should
be different based on the crosstab column. To complete this recipe perform the following steps:

1. We will start by creating the discontinuous crosstab on the main report. We already
have the Order method on columns. Drag Product line also onto the crosstab,
as a column. The report will look as shown in the following screenshot:

Chapter 2

67

2. Now select the intersection cells under the Product line column.

3. From its Properties, set Define contents to Yes. This will make the intersection empty.

4. Unlock the report items. Drag Quantity from the Data Items pane again on the report
in this empty crosstab intersection.

5. You will notice that there is no drill-through for this instance of Quantity as shown in
the following screenshot:

6. Now select this instance of Quantity and define the drill-through definition in the
same way as you did previously. The only difference will be that the target report is
Drill-3, which accepts Product line and Month.

7. Run the report to test both the drill-throughs from intersections.

How it works...
In the last recipe, we saw that creating drill-through link from a crosstab intersection needs
that we unlock the item and create it from the text item within.

In the case of a discontinuous report, we have different items on columns (Product line and
Order method type). However, when you select the text item from intersection, Report Studio
doesn't distinguish between them.

Hence, we need to select the intersection under one of the column items and set its Define
content to Yes. This means we want to override the contents of this intersection and define
the contents ourselves.

After changing the property, Report Studio makes that intersection empty. We can then unlock
the items and drag any measure/calculation into it. We chose to drag Quantity again. Now
Report Studio will distinguish between both the Quantity items (the one under Product line
and the one under Order method types).

Finally, we defined drill-through to Drill-3 appropriately.

Advanced Report Authoring

68

There's more...
You can also use the Define content option to override the information being displayed.
For example, if you want to show Revenue under Product lines instead of showing Quantity.

This also gives you the opportunity to define styles differently and use conditional styling.

3
Using JavaScript Files –

Tips and Tricks

In this chapter, we will cover the following:

 f Defining dynamic default values for prompts

 f Changing the title of the value prompt

 f Validating textbox prompts

 f Showing/hiding controls at runtime

 f Selecting and submitting values automatically

 f Manipulating the Date Time control

 f Creating a variable width bar chart using JavaScript

Introduction
Report Studio is a web-based tool and the reports designed in Cognos Report Studio are
accessed through a web browser. This allows us to do certain web page specific tasks,
for example, embedding our own HTML code or JavaScript files.

Often, business users need certain functionality which is not naturally available in Cognos
Report Studio. Hence, a new area has evolved in the Cognos Report Studio developer's
world—"JavaScripting".

With JavaScript, we can do certain manipulations on the objects used for prompt pages.
Please note that this was not officially introduced in the initial Cognos documentation.
However, lately many such techniques were published on the IBM website itself.

Using JavaScript Files – Tips and Tricks

70

In this chapter, we will look at some recipes that will teach you very useful and commonly
required functionalities achieved using JavaScript files. All these recipes are valid for IBM
Cognos 10. For Cognos 8, some code changes might be required. There are a lot of
examples and reading material is available for prior versions on the Internet.

After trying these recipes, you can build upon the ideas to write more sophisticated scripts
and do a lot more with your Cognos Reports. Please note that IBM doesn't directly support
these techniques and does not guarantee any upward or backward compatibility. However,
they are aware that developers are widely using them, and hence IBM will try to maintain
most of the objects, properties, and events in the future.

The level of JavaScript that we will be using in this chapter is basic. However, if you have
never used JavaScript before, I would recommend getting familiar with JavaScript basics
using books or online tutorials. The website http://www.w3schools.com/js is a good
source with a nice collection of samples and provides a quick tool to try your own scripts.

Please note that all the JavaScript-based recipes will need you to enable JavaScript in your
web browser. Usually, it is enabled by default.

Defining dynamic default values for prompts
Suppose that we have a report which allows users to select a shipment month. In our data
warehouse, the Time dimension (for shipment month) contains values up to the current
month. However, the business owners frequently select the prior month, so they want the
prompt to have the prior month selected by default.

Getting ready
Create a report that filters on the Shipment Month Key. Create a prompt page and add a
value prompt for the Shipment Month Key.

How to do it...
To achieve the requirements of the business owner, we will write a JavaScript code
that selects the second value from the top by default. In order to do this, perform the
following steps:

1. Open the prompt page in the report and select the value prompt. Adjust the sorting
property such that the Shipment Month Keys are populated in the descending order.

2. Let's start by adding an HTML item before the Shipment Month value prompt.
The HTML should be .

Chapter 3

71

3. Now add another HTML item after the Shipment Month value prompt. The HTML
should be , as shown in the following screenshot:

4. Now add another HTML item to the prompt page.

5. Define the item as shown in the following code:
<script>
var theSpan = document.getElementById("A1");
var a = theSpan.getElementsByTagName("select"); /* This stmt
return an array of all value prompts within span */
for(var i = a.length-1; i >= 0; i--) /* now loop through the
elements */
{ var prompts = a[i];
 if(prompts.id.match(/PRMT_SV_/))
 {prompts.selectedIndex = 3; } /* This selects the second
 options from top */
 canSubmitPrompt();
}
</script>

6. Execute the report to test it.

How it works...
The logic used here is that we first sort the months in descending order and then select the
second option from the top. As the values populated from the database are up to the latest
month, the second value from the top will be the previous month.

As mentioned at the beginning of the chapter, Report Studio prompt pages are similar to any
other HTML pages with most of the controls being standard web controls. The HTML item in
Report Studio is a powerful component which allows us to embed our own code within the
page generated by IBM Cognos.

When we put a JavaScript within an HTML item, it is automatically executed when the
page loads.

Using JavaScript Files – Tips and Tricks

72

Span
With IBM Cognos 8.3, the report viewer architecture has been majorly changed. Before IBM
Cognos 8.3, it was common practice to define a NAME or ID for the prompt controls and use
that to manipulate controls at runtime through JavaScript.

However, from Version 8.3 onwards, the IDs of the controls are generated randomly and are
not fixed. So, it is a little difficult to get hold of a control. For this reason, we have defined a
span around the control that we want to manipulate.

By wrapping the control within the span tags, we will reduce the scope of our search
in JavaScript.

GetElementsByTagName
As we want to capture the value prompt within the span, we search for elements with the
select tag within the span A1.

If we want to perform the same operation on multiple value prompts, we can put them all
within the same span. The GetElementsByTagName function returns an array of elements
with the specified tag.

SelectedIndex
Once a value prompt object is captured in a variable, we can set its SelectedIndex property
to set the selection to the required value.

CanSubmitPrompt
In prior versions of Cognos, we used the CheckData() function to submit the prompt value.
This means Report Studio will accept the value and the adornments will disappear. However,
from Version 8.3 onwards, we can use a global CanSubmitPrompt() function for the
same purpose.

There's more...
A more suitable example of dynamic selection is iterating through the value prompt options
and selecting one based on a condition.

You can use the JavaScript functions to capture the system date and accordingly work out
the prior month. Then, traverse through all the values and select an appropriate one. Similarly,
you can iterate through all the prompt values and select the required entry based on value
instead of hard-coding selectedIndex to 3.

Chapter 3

73

Changing the title of the value prompt
In the previous example, the first line of the value prompt shows the data item name, that is,
Month key (ship date) as shown in the following screenshot:

The business owners want to change this to a more generic and user-friendly text.

Getting ready
We will use the report generated in the previous recipe.

How to do it...
We need to add a line to the JavaScript from the previous recipe to change the text of first
option (index 0). To do this perform the following steps:

1. Open the prompt page of the report created in the previous recipe.

2. Double-click on the HTML item that contains the JavaScript.

3. Replace the code with the following:
<script>
var theSpan = document.getElementById("A1");
var a = theSpan.getElementsByTagName("select");
for(var i = a.length-1; i >= 0; i--)
 { var prompts = a[i];
 if(prompts.id.match(/PRMT_SV_/))
 { prompts.selectedIndex = 3;

Using JavaScript Files – Tips and Tricks

74

 prompts.options[0].text = 'Choose Shipment Month'; /*
 This is the new line added to script */
 }
 canSubmitPrompt();
}
</script>

4. Run the report to test it as shown in the following screenshot:

How it works...
By default, the first line of a value prompt is the name of the data item. If you define the data
item expression within brackets, that is, ([Sales (query)].[Time (ship date)].
[Month key (ship date)]) in this example, then the first line of the value prompt is
populated by the parameter name.

However, there is no property within Report Studio that would allow us to put a custom title.
Hence, we are using JavaScript. We already know how to capture the prompt control using the
GetElementsbyTagName function. Once it is captured, we can manipulate the values. We
change the text property of the options[0] element to update the first line of the prompt.

Chapter 3

75

There's more...
You can also use the REMOVE() function to remove particular lines of a value prompt. It is
often useful to remove the first two lines (title and separator) using the following statements:

Prompts.remove(0);
Prompts.remove(1);
Prompts.removeAttribute("hasLabel");

Validating textbox prompts
Let's say there is a report with a textbox prompt. Users are expected to enter a phone number
in (nnn) nnn-nnnn format in that prompt.

In this recipe, we will write a code to validate the value entered by the user and submit the
report only if the value entered is in the specified format.

Getting ready
Pick any report and add a textbox prompt to it. We will add a JavaScript to validate that textbox.

How to do it...
We want to make sure that the user will write the phone number in the right format. So, we
will validate the number entered by the user using JavaScripts, and in case the number is
not following the required format, a warning message will appear to the user with the correct
format. To do this, perform the following steps:

1. Wrap the textbox prompt within a span in the same way as we did in prior recipes.

2. Add the following script to the page footer:
<script>
function ValidatePage()
{
 var theSpan = document.getElementById("A1");
 var a = theSpan.getElementsByTagName("input"); /* this
captures the textbox */
 for(var i = a.length-1; i >= 0; i--)
 {
 var link = a[i];
 if(link.id.match(/PRMT_TB_/))
 {phoneRegex = /^\(\d{3}\) \d{3}-\d{4}$/; /* This is
 regular expression to allow only the strings in (nnn)
 nnn-nnnn format */

Using JavaScript Files – Tips and Tricks

76

 if(!link.value.match(phoneRegex)) {
 alert('Please enter phone number in (nnn) nnn-nnnn
 format');
 link.focus();
 link.select();
 return; }

 else {promptButtonFinish();}
 }
 }
}

/* Following is standard code to get FormWarpRequest*/
var fW = (typeof getFormWarpRequest == "function"
?getFormWarpRequest() : document.forms["formWarpRequest"]);
if (!fW || fW == undefined) { fW = (formWarpRequest_THIS_
?formWarpRequest_THIS_ : formWarpRequest_NS_);}

/* This returns all elements of Button tag */var buttons = fW.getE
lementsByTagName("BUTTON");
for (var i=0; i<buttons.length; i++)
{
 if (buttons[i].id.match(/finish/)) // Capture the finish
button
 {
 if (buttons[i].onclick.toString().indexOf('finish') >
0)
 { buttons[i].onclick = ValidatePage;} /* This
overrides the FINISH button and attaches it to our function */
 }
}
</script>

How it works...
We first define a function called ValidatePage() that captures the textbox value and
checks whether it follows the required format. We are using the match function of JavaScript
which allows us to parse the textbox string against our regular expression. The regular
expression ^\(\d{3}\) \d{3}-\d{4}$ allows only the string in (nnn) nnn-nnnn format.
Please note that there is a space in the phone number string format. If you forget this
space while trying the prompt, the number will not be considered as a correct entry.
You can read more about regular expressions and also try some on this website:
http://www.regular-expressions.info/javascriptexample.html.

Chapter 3

77

If the textbox value matches with our regular expression, we call the promptButtonFinish()
function to submit the prompt page. Otherwise, we show an error message and set the focus
back to the textbox.

Finally, this ValidatePage() function is attached to the Finish button by the second part of
the script. We capture the Finish button by its TagName (buttons) and ID match (/finish/)
and then override its OnClick event.

Showing/hiding prompt controls at runtime
Let's say a report shows sales quantity by product line and order method type. Users need to
filter on either product line or order method type, any one at a time.

They would like a facility to select which prompt they would want to filter on, and depending on
the selection, the prompt should appear.

Getting ready
Create a list report that shows product lines, order method types, and sales quantity.
Create two options filters—one on product lines and the other on order methods.

How to do it...
In this recipe, we will use JavaScript to control showing or hiding a prompt based on the
selection of another prompt. To do this, perform the following steps:

1. We will start by creating prompts for both the filters. For that, add a prompt page and
add two value prompts. Use the prompt wizard to connect them to the parameters
(product line and order method).

2. Set the Hide Adornment property of both the prompts to Yes.

Using JavaScript Files – Tips and Tricks

78

3. Now drag an HTML item just before the product line prompt. Define it as follows:
<Input type = radio Name = r1 title= "Click me to select
Product Line..." Value = "PL" onclick=
"radioSelect(this)">Product Line

<Input type = radio Name = r1 title= "Click me to select
Order Method..." Value = "OM" onclick=
"radioSelect(this)">Order Method

4. Now add another HTML item between the product line prompt and order method
prompt. Define it as .

5. Finally, add a third HTML item after the order method prompt. Define it as follows:

<script>
var fW = (typeof getFormWarpRequest == "function"
?getFormWarpRequest() : document.forms["formWarpRequest"]);
if (!fW || fW == undefined) { fW = (formWarpRequest_THIS_
?formWarpRequest_THIS_ : formWarpRequest_NS_);}
var theSpan = document.getElementById("ProductSpan");
var a = theSpan.getElementsByTagName('select');
for(var i = a.length-1; i >= 0; i--)
{ var ProductBox = a[i];
 ProductBox.style.display = 'none'; }
theSpan = document.getElementById("OrderSpan");
a = theSpan.getElementsByTagName('select');
for(var i = a.length-1; i >= 0; i--)
{ var OrderBox = a[i];
 OrderBox.style.display = 'none'; }

function radioSelect(rad)
{ if (rad.value == "PL") /* Hide OrderBox and show
ProductBox */
 { ProductBox.style.display = '';
 OrderBox.style.display = 'none';
}
else if (rad.value == "OM") /* Hide ProductBox and show OrderBox
*/
{ ProductBox.style.display = 'none';
 OrderBox.style.display = '';
}
else /* Hide both controls */
{ ProductBox.style.display = 'none';
 OrderBox.style.display = 'none'; }
}
</script>

Chapter 3

79

Now your prompt page will look like the following screenshot in Report Studio:

6. Run the report to test it. You will see two radio buttons. Depending on which one you
select, one of the prompts will be visible as shown in the following screenshot:

How it works...
This recipe works in three parts. First, we defined the radio buttons in the HTML item. This is
our own code, so we can control what happens when users select any of the radio buttons.

Before explaining how this recipe works, I would like the readers to know that
it is possible to achieve the required functionality using conditional blocks
instead of JavaScript. You would use the auto-submit functionality of the
radio button prompt, which will then cause the conditional block to show the
appropriate prompt.

Then, we wrapped both the prompts into spans so that we can capture them in the JavaScript
and manipulate the properties.

Finally, we wrote the JavaScript to toggle the display of prompts depending on the radio
button selection.

There's more...
When the prompt is hidden through the style.display property, the adornments aren't
hidden. That is why we set the adornments to off in step 2.

Using JavaScript Files – Tips and Tricks

80

When the visibility of a control is turned off, the control is still present on the form and the
selected value (if any) is also submitted in the query when the user clicks on the Finish button.

Hence, it is preferred that we reset the selection to index(0) when a prompt is hidden.
For information on how to select a value through JavaScript, please refer to the Defining
dynamic default values for prompts recipe of this chapter.

Selecting and submitting values
automatically

A business report has numerous prompts on the prompt page. Often, users want to run a
report for the latest month in the database, Camping Equipment product and E-mail as an
order method.

They want a facility to either manually select values for these prompts or alternatively run the
report for the previous selections on a single button click.

Getting ready
Create a list report with Product line, Order method, and Sales Quantity as columns.

Create optional filters on Product line, Order method, and the shipment month, that is,
Month Key (shipment date).

Create a prompt page with three value prompts for these filters.

How to do it...
In this recipe, we will add a custom button on the prompt page that will allow users to quickly
run the report for frequently used selections. To do this, perform the following steps:

1. We will start by wrapping the prompts within a span so that they can be captured
easily in JavaScript. Add one HTML tag before and one after each prompt to define
the spans. Define the spans as PL, OM, and SM for Product Line, Order Method, and
Shipment Month respectively. This is similar to the wrapping we have done in most of
the prior recipes.

2. Add one more HTML item on the prompt page after all the prompts and define it
as follows:
<script>
function defaultSelect()
{
 var a = document.getElementById("PL");
 var PL = a.getElementsByTagName("select");

Chapter 3

81

 for(var i = PL.length-1; i >= 0; i--) /* Captures
Product Line prompt */
 {
 var PLBox = PL[i];
 }

 a = document.getElementById("OM");
 var OM = a.getElementsByTagName("select");
 for(var i = OM.length-1; i >= 0; i--) /* Captures Order
Method prompt */
 {
 var OMBox = OM[i];
 }

 a = document.getElementById("SM");
 var SM = a.getElementsByTagName("select");
 for(var i = SM.length-1; i >= 0; i--) /* Captures
Shipment Month prompt */
 {
 var SMBox = SM[i];
 }
 PLBox.selectedIndex = 2;
 OMBox.selectedIndex = 2;
 SMBox.selectedIndex = 4;
 canSubmitPrompt();
 promptButtonFinish();
}
</script>
<button type="button" onclick="defaultSelect()" class="bt"
style="font-size:8pt">Run for Defaults</button>

Now your prompt will look similar to the following screenshot in Report Studio:

Using JavaScript Files – Tips and Tricks

82

3. Run the report to test it. You should see a button that you did not see in Report
Studio. When you click on the button, it will automatically select the prompt values
and run the report as shown in the following screenshot:

How it works...
In this recipe, we are mixing two techniques learnt from previous recipes. In the Defining
dynamic default values for prompts recipe, we learnt how to capture a value prompt and
change its selection.

So, we are using the same technique here but instead of calling on Page Load, we are
calling the routine when users click on the button.

Then, we are also using a function, promptButtonFinish(), that we used in the Validating
textbox prompts recipe to submit the prompt.

The custom button is defined using the <button> tag, and as it is our own object, we can
easily make it call our JavaScript function for the on click event.

As mentioned in the Defining dynamic default values for prompts recipe, you will not
hardcode the selectedIndex in your script. Instead, you should traverse through all the
prompt selection options and choose one based on the value. For example, look for Camping
Equipment so that its order in the list won't matter.

Please refer to one such example on the IBM website at this URL:
http://www-01.ibm.com/support/docview.wss?uid=swg21343424.

There's more...
This technique is very useful in real-life scenarios. You can define multiple buttons for different
frequently used selections. It saves time for users and makes the reports convenient to use,
especially when there are more than five prompts.

Chapter 3

83

Manipulating the Date Time control
There is a report that allows users to filter on Shipment Date Time using the Date Time
control. By default, Cognos selects the current date and midnight as the date and time.

Report Studio allows you to override this with another static default value. However,
a business will usually run the report for the end of the previous business day (5 pm).

In this recipe, we will learn how to change the default date and time for a Date Time control
to the end of the previous business day.

Getting ready
Create a dummy report that shows sales quantity by shipment day. Define a filter on
shipment day.

How to do it...
In this recipe, we want to change the default date and time for a Date Time control to the end
of the previous business day using JavaScript. To do this, perform the following steps:

1. We will start by adding a Date Time control to the report. For that, add a new
prompt page.

2. From Toolbox, drag Date & Time Prompt onto the prompt page. Connect it to the
Shipment Day filter using an appropriate parameter in the prompt wizard.

3. Now select the prompt and set its Name property to ShipmentDate as shown in the
following screenshot:

Using JavaScript Files – Tips and Tricks

84

4. Now add an HTML item to the prompt footer after the Finish button. Define it
as follows:
<script>
function subtractDay ()
{ var dtToday = new Date();
 var dtYesterday = new Date(dtToday - 86400000);
 // NOTE 86400000 = 24 hours * 60 (minutes per hour) * 60
(seconds per minute) * 1000 milliseconds per second)
 var strYesterday = [dtYesterday.getUTCFullYear(), dtYesterday.
getMonth()+1, dtYesterday.getDate()].join("-");
 return strYesterday;
}
function subtractTime ()
{ var Time = "17:00:00.000"; return Time;
}
pickerControlShipmentDate.setValue(subtractDay());
timePickerShipmentDate.setValue(subtractTime());
</script>

5. Run the report to test it. You will see that the value of the Date Time control is set to
the previous day, which is 5 pm by default.

How it works...
Here we use standard JavaScript functions to work out the date of the previous day.
Please note that this date is computed based on the system date on the user's machine.

Then, we apply this date to the Date Time control using a pickerControl<name> object.
Also, we set the time to 5 pm using the setValue function of the timePicker<name> object.

You can similarly do more date and string manipulations to find First of Month, Last of
Month, and so on. I found the following script on the Internet for generating commonly
used dates:

<script language="JavaScript" runat="SERVER">
var today = new Date();
var thisYear = today.getYear();
var thisMonth = today.getMonth();
var thisDay = today.getDate();

function rw(s1, s2)
{
 Response.Write("<tr><td>"+s1+"</td><td>"+s2+"</td></tr>");
}
Response.Write("<table border='1'>");
rw("Today:", today.toDateString());

Chapter 3

85

//Years
var fdly = new Date(thisYear - 1, 0, 1);
rw("First day of last year:", fdly.toDateString());

var ldly = new Date(thisYear, 0, 0);
rw("Last day of last year:", ldly.toDateString());

var fdty = new Date(thisYear, 0, 1);
rw("First day of this year:", fdty.toDateString());

var ldty = new Date(thisYear + 1, 0, 0);
rw("Last day of this year:", ldty.toDateString());
var fdny = new Date(thisYear + 1, 0 ,1);
rw("First day of next year:", fdny.toDateString());

var ldny = new Date(thisYear + 2, 0, 0);
rw("Last day of next year:", ldny.toDateString());

//Months
var fdlm = new Date(thisYear, thisMonth - 1 ,1);
rw("First day of last month:", fdlm.toDateString());

var ldlm = new Date(thisYear, thisMonth, 0);
rw("Last day of last month:", ldlm.toDateString());

rw("Number of days in last month:", ldlm.getDate());

var fdtm = new Date(thisYear, thisMonth, 1);
rw("First day of this month:", fdtm.toDateString());

var ldtm = new Date(thisYear, thisMonth + 1, 0);
rw("Last day of this month:", ldtm.toDateString());

rw("Number of days in this month:", ldtm.getDate())

var fdnm = new Date(thisYear, thisMonth + 1, 1);
rw("First day of next month:", fdnm.toDateString());

var ldnm = new Date(thisYear, thisMonth + 2, 0);
rw("Last day of next month:", ldnm.toDateString());

rw("Number of days in next month:", ldnm.getDate());

Response.Write("</table>");

</script>

Using JavaScript Files – Tips and Tricks

86

There's more...
You can write more sophisticated functions to work out the previous working day instead of
just the previous day.

You can mix this technique with other recipes in this chapter to tie the selection event with
the button click or radio buttons; that is, a particular date/time can be selected when a user
clicks on the button or selects a radio button.

Creating a variable width bar chart using
JavaScript

A report shows the Unit cost and Unit price of all products. It also works out the Profit
Margin from these two.

Business owners are naturally more interested in products with a high profit margin as well as
a high unit price.

Getting ready
Create a simple list report with Product, Unit cost, and Unit price as columns.

Also, add a calculated item called Margin to the list to compute the profit margin and define it
as follows:

([Unit price]-[Unit cost])/[Unit cost]

How to do it...
In this recipe, we will create a variable width bar chart using JavaScript that shows a bar for
every product. The length of bar will indicate the profit margin, whereas the width will indicate
the unit price. To do this, perform the following steps:

1. Drag a new HTML item onto the list report as a new column.

2. Unlock the report objects using the unlock button. Add four more HTML items in the
column where you added the HTML item in the previous step. The report should look
like the following screenshot:

Chapter 3

87

3. Now define the first HTML item as:
<script>
var barlen=100*((

4. For the second HTML item, set the Source Type to Data Item Value and select
Margin as Data Item as shown in the following screenshot:

5. Define the third HTML item as:
));
var barheight=((

6. For the fourth HTML item, again set the Source Type to Data Item Value. Select Unit
price as Data Item.

7. Define the fifth and last HTML item as:
)/10) ;
var myBar='<div style="background-color:blue; width:' +barlen+';
height:' + barheight +'"></div>' ;
document.write(myBar) ;
</script>

Using JavaScript Files – Tips and Tricks

88

8. Run the report to see the output. It will look like the following screenshot:

As you can see, Bugshield Lotion Lite has a huge profit margin. Canyon Mule Extreme
Backpack might have a relatively low profit margin, but its unit price is high, and hence
it is also an important product for the business.

In short, the area of the bar (width X height) indicates the importance of a product to
the business.

Chapter 3

89

How it works...
Report Studio has in-built chart objects which allow you to create sophisticated and detailed
charts. However, in this case, we don't have any complex charting requirements.

We just want to highlight the products with high profitability. The JavaScript used in this recipe
has the following structure:

<script>
var barlen=100*((length_driver)) ;
var barheight=((width_driver)/10) ;
var myBar='<div style="background-color:blue; width:' +barlen+';
height:' + barheight +'"></div>' ;
document.write(myBar) ;
</script>

We have split it into five HTML items so that the length_driver and width_driver can
be replaced with any data item from the query. We have used the Margin and Unit price,
but any other data item or calculation can be used as per the business requirement.

The multiplier (100) and divisor (10) are scaling factors as we need to scale the actual values
to pixels. We know that Margin is in percentage and the value range is approximately 0.5
to 30. Hence, we multiply it by 100 to get the bars in the range of 50 to 300 pixels long.
Similarly, Unit price is scaled down by 10 to get a bar width in the range of 5 to 50 pixels.

You can change the scaling to appropriate values in order to achieve nice looking bars.

There's more...
JavaScripts are executed on the client side within the web browser; hence there is no load on
the server to produce these charts.

However, please note that this technique is useful only when users are interactively using the
report in a web browser. Also, users must have JavaScripts enabled in their browser. It doesn't
work for PDFs, Excel sheets, or any output format other than HTML.

4
The Report Page – Tips

and Tricks

In this chapter, we will cover the following:

 f Showing images dynamically (traffic light report)

 f Handling the missing image issue

 f Dynamic links to an external website (a Google Maps example)

 f Alternating drill links

 f Showing tooltips on reports

 f Merged cells in Excel output

 f Worksheet name in Excel output

 f Conditional column titles

Introduction
In this chapter, we will look at some tricks that I have learned over the period. As mentioned
before in this book, Cognos Report Studio does have a flexible structure which allows us to
implement all types of complex reports and charts. Here we will see some techniques that
will help us to build better and more complex reports.

The Report Page – Tips and Tricks

92

Showing images dynamically (traffic light
report)

In Chapter 2, Advanced Report Authoring, we created a report in the Formatting negative
values recipe. This report shows the month-on-month difference in sales quantity.

Business wants to give this report a "dashboard" look by putting traffic light images
(red, yellow, and green) in each row based on whether there is a rise in sales or a fall.

Getting ready
We will use the report based on the Formatting negative values recipe in Chapter 2, Advanced
Report Authoring for this recipe.

Open that report in Cognos Report Studio and save a copy with a new name.

Please note that you will need administrator rights on the Cognos server to
complete this recipe. If the server is installed on your personal machine, you
will have these rights by default.

How to do it...
In this recipe, we will use three images (red, yellow, and green) as performance indicators in
the report. To do this, perform the following steps:

1. First we need to create three icons or images for red, yellow, and green. They should
be already available on the Cognos server in the {Cognos Installation}\
webcontent\samples\images folder. If not, then create them using any image
editor software or use the images supplied with this book.

2. Once you have the three images which you need to conditionally show on the report,
place them on the Cognos server in the {Cognos Installation}\webcontent\
samples\images folder. If the folder is not there, create one.

3. Now open the report that shows the month-on-month Running Differences as shown
in the following screenshot:

Chapter 4

93

4. Insert a new image from the Toolbox pane on the list report as a new column.

5. Now go to Condition Explorer and create a new string variable. Define the expression
as follows:
if ([Query1].[Running Difference] > 0)
then ('green')
else if ([Query1].[Running Difference] < 0)
then ('red')
else ('yellow')

6. Call this variable Traffic and define three possible values for it (red, yellow,
and green).

7. Now go back to the report page. Select the image. Open its URL Source
Variable dialog box. Choose the variable Traffic and click on OK as shown
in the following screenshot:

8. From Condition Explorer, choose the red condition. Now click on the image again.
It will allow you to define the image URL for this condition.

The Report Page – Tips and Tricks

94

9. Set the URL to../samples/images/Red.jpg as shown in the following screenshot:

10. Similarly, define the URL for yellow and green conditions as ../samples/images/
yellow.jpg and ../samples/images/green.jpg respectively.

11. Run the report to test it as shown in the following screenshot:

Chapter 4

95

How it works...
Cognos Report Studio allows you to put the images in the report by specifying the URL of
the image. The images can be anywhere on the intranet or Internet. They will be displayed
properly as long as the URL is accessible from Cognos application server and gateway. You
might also need to check the IIS security and allow Anonymous Read and Browse accesses
if you have a problem loading the pictures saved on your local server.

In this recipe, we are using a report which already calculates the Running Difference. Hence,
we just had to define a conditional variable to trap different possible conditions. The Image
component allows us to define the URL for different conditions by attaching it to the Traffic
variable in step 7.

There's more...
In this case, though the URL of the image changes dynamically, it is not truly 100 percent
dynamic. There are three static URLs already defined in the report, and one is picked up
depending on the condition.

We can also use a data item or report expression as a source of the URL value. In that case,
it will be totally dynamic and based on the values coming from the database; Cognos will work
out the URL of the image and display it correctly.

This is useful when the image filenames and locations are stored in the database.
For example, Product Catalog kind of reports.

Please note that this recipe works fine in HTML, PDF, and Excel formats. Also,
we have used relative URLs for the images, so that the report can be easily
deployed to other environments where Cognos installation might be in a
different location. However, we need to ensure that the images are copied in
all environments in the folder mentioned in step 2.

Handling the missing image issue
In the previous recipe, we saw how to add images to the report. You will be using that
technique in many cases, some involving hundreds of images (for example, Product Catalog).

The Report Page – Tips and Tricks

96

There will often be a case in which the database has a URL or image name, whereas the
corresponding image is either missing or inaccessible. In such a case, the web browser
shows an error symbol. This looks quite ugly and needs to be handled properly.

In this recipe, we will see how to handle this problem gracefully.

Getting ready
We will use the report prepared in the previous recipe. We need to delete the Green.jpg file
(or rename it to something else) from the server in order to create the missing image scenario.

How to do it...
In this recipe, we will first delete the green indicator image to test the problem of a missing
image then we will see how to handle it. To do this, perform the following steps:

1. In the previous recipe, we added an image object and defined its conditional URLs.
We need to replace that image with an HTML Item. For that, unlock the report objects
and delete the image component. Add an HTML Item in the same column as shown
in the following screenshot:

Chapter 4

97

2. Select this HTML Item and from the Properties pane, set its HTML Source
Variable to Traffic (please note that we already have this conditional variable
in the previous recipe).

3. Now define the HTML for different conditions. Start with red. Choose red from
Conditional Explorer and define the HTML as <img src="../samples/images/
red.jpg" alt="downsell" onError="img2txt(this)"/>.

4. For yellow, define the HTML as <img src="../samples/images/yellow.jpg"
alt="No Change" onError="img2txt(this)"/>.

5. For green, define HTML as <img src="../samples/images/green.jpg"
alt="Upsell" onError="img2txt(this)"/>.

6. Now go back to the No Variable state by double-clicking on the green bar, and add
another HTML item on the report. Put it just before the list.

7. Define this HTML as follows:
<script>
function img2txt(img) {
txt = img.alt;
img.parentNode.innerHTML=txt;}
</script>

The Report Page – Tips and Tricks

98

8. Now run the report to test it as shown in the following screenshot:

As you can see, if the image is missing, the report will now handle it gracefully and show some
text instead of an error image.

How it works...
Here we are using our custom code to display the image instead of using Cognos Report
Studio's in-built Image component.

We have pulled an HTML item onto the report and defined it to display different images
depending on the condition using the tag. This tag allows us to define an alternative
text and onError event as well. We are using the onError event to call our custom made
JavaScript function called img2txt.

This function replaces the HTML item with text which was originally defined as alternative text.
Hence, if green.jpg is missing, this function will replace it with the text Upsell.

There's more...
As we are using HTML code and JavaScript in this technique, it works in HTML format only.
This technique will be useful for a lot of graphical reports (dashboards, scorecards, online
product catalogs, and so on).

Chapter 4

99

Dynamic links to an external website
(a Google Maps example)

In this recipe, we will introduce you to the Hyperlink component.

Let's say that a report shows retailer information by products. It shows various fields like
Retailer name, Contact information, City, and Postal zone. Business wants to have a link to
Google Maps that will show a retailer's place on the map using the Postal zone information.

As the addresses might change in the backend, the technique needs to be dynamic to pick up
the latest postal zone.

Getting ready
Create a simple list report that shows retailer information by Product lines as shown in the
following screenshot:

How to do it...
In this recipe, we will add a hyperlink to the report that will open a Google map once you have
clicked on it. To do this, perform the following steps:

1. From the Toolbox, drag a hyperlink object onto the report as a new column as shown
in the following screenshot:

The Report Page – Tips and Tricks

100

2. Change its Text property to Map. Set the URL Source Type to Report Expression
and define the report expression as http://maps.google.com/maps?q=' +
[Query1].[City (multiscript)] as shown in the following screenshot:

3. Run the report to test it as shown in the following screenshot:

Chapter 4

101

As you can see, there is a link for each retailer record. If you press Shift and click on the link,
it will open Google Maps for the corresponding postal zone in a new window.

How it works...
Here we are using the Hyperlink component of Cognos Report Studio. We can define the URL
as any static link.

However, for our requirements, we have defined a report expression. This allows us to provide
a dynamic link which picks up the latest postal zone from the database. We are passing the
postal zone to Google Maps as part of a URL.

The Hyperlink component works in HTML as well as Excel and PDF report formats. This object
currently does not have the property to define whether the link target should open in a new
window or the same window. Just clicking on the link opens the target in the same window,
whereas pressing Shift and then clicking on the link opens the target in a new window.

There's more...
You can use this technique to call any external website that accepts parameters within a URL.
You can pass multiple parameters too.

Alternating drill links
In this recipe, we will learn about a limitation of drill links and how to overcome it using
Render Variable.

Let's say there is a crosstab report which shows sales quantity by month and order method.
We need to provide a drill-through facility from the intersection. However, the drill-through
target needs to be different depending on the order method.

If the order method is e-mail, the drill-through from the intersection should go to a report
called Alternating Drill Link—Drill Report 2. For all other order methods, it should go to
Alternating Drill Link—Drill Report 1.

Getting ready
Create a crosstab report to serve as the main report. Drag Month key (ship date) on rows,
Order method type on columns and Quantity on the intersection.

Create two list reports to serve as drill reports. In the sample provided with this book, we have
used two list reports for this. One accepts the Order method and Month. The other accepts
only Month and is designed to work for the order method E-mail.

The Report Page – Tips and Tricks

102

How to do it...
In this recipe, we will create two different drill-through links in the crosstab intersection based
on the order method. To do this we will start by performing the following steps:

1. As already learnt in Chapter 2, Advanced Report Authoring, create a
drill-through to first drill the report from the crosstab intersection as
shown in the following screenshot:

2. Now make sure that the report objects are unlocked. Select the intersection text item
(which now looks like a hyperlink as there is already a drill-through defined). Hold the
Ctrl key and drag the text to the right within a cell.

3. This should create a copy of the text item within that cell and it will look like the
following screenshot:

4. Now select this copy of the text item. Hit the drill-through button to open definitions.
Delete the existing drill-through to the first report. Create a new drill to a second
report. So, now we have two text items in the cell, each going to different drill reports.

5. Create a string type of Conditional Variable. Define it as follows:
if ([Query1].[Order method] = 'E-mail') then ('E-mail')
else ('Other')

Call it OrderMethod and define the two values to be E-mail and Other.

6. Now go back to the report page. Select the first text item from the intersection. Open
its Render Variable property. Choose the OrderMethod variable and select to render
for Other as shown in the following screenshot:

Chapter 4

103

7. Similarly, define the Render Variable for the second text item, but choose to render
for E-mail.

8. Run the report to test it. You will see that clicking on the intersection numbers opens
the first drill report for any order method other than E-mail, whereas for the numbers
under E-mail, the second drill report opens.

How it works...
First, let me explain the limitation here. CRS allows us to define multiple drill targets for an
item. However, there is no facility to define a conditional target. So, if we define two targets,
Cognos will ask users to select one at runtime.

In our scenario, we want Cognos to go straight to one of the two targets depending on the
order method condition. For that, we are using the Render Variable property.

Render Variable
This property allows us to attach a conditional variable to the report object and define the
conditions for which the object will be rendered.

This works best with String variables. For a Boolean type of conditional variable, rendering
is possible only for 'Yes'.

Instead of defining two targets on the same text item, we are creating two text items and
controlling their rendering.

The Report Page – Tips and Tricks

104

There's more...
Even with a String type of conditional variable, rendering cannot be defined for the default
(Other) condition. Hence, we had to define our own Other condition.

Showing tooltips on reports
A report shows all-time sales quantity by product names. As this report is used online (HTML
format in a browser), the business owners think it will be handy to show Product description
as a tooltip on the product names. When the users hover their mouse pointer over a Product
name, a tooltip should appear describing the product.

Getting ready
Create a simple list report with Product name, Product description, and Sales Quantity
as columns.

How to do it...
We don't want to show the Product description as column, but want to use the data item in
further steps. To do this, perform the following steps:

1. Select the Product description column body. Use the Select Ancestor and go up one
level by selecting List Column. In the properties you will find a property Render, use
No. This will ensure that the column will not appear/render at runtime as shown in
the following screenshot:

2. On the report page, unlock the report objects by hitting the unlock button.

Chapter 4

105

3. Insert an HTML Item in the Product column just before the text item. Insert another
HTML Item after the text item. This will look like the following screenshot:

4. Make the first HTML Item a Report Expression and define it as <span title="' +
[Query1].[Product description] + '">.

5. Make the second HTML Item a Text and define it as .

The Report Page – Tips and Tricks

106

6. Run the report to test it as shown in the following screenshot:

How it works...
Here we are using our familiar and very useful HTML tag called . We used it earlier for
applying JavaScript for prompt manipulation. In this recipe, we are wrapping the product name
within a span and defining its Title to be Product description.

When the report is run in a web browser, the title is shown as a tooltip.

There's more...
Once you define the span, you can do much more to the item. For example, overriding the
mouse events. Please refer to HTML guides for this.

See also
 f The Defining dynamic default values for prompts recipe in Chapter 3,

Using JavaScript Files – Tips and Tricks

Chapter 4

107

Merged cells in Excel output
Let's say there is a list report with many columns. The report shows the title in the page
header. Users mostly access this report in Excel format.

When the output is generated, Cognos puts the output in the first cell (A1). This stretches the
A column as shown in the following screenshot:

In this recipe, we will see how to get Cognos to generate merged cells so that the columns are
not stretched.

Getting ready
Create a simple list report. Put a report title in the page header as shown in the
following screenshot:

The Report Page – Tips and Tricks

108

How to do it...
We can merge cells in Excel in the same way we merge columns in a table in Cognos. In fact,
this is what we are going to do:

1. Insert a Table from the Toolbox pane into the report header.

2. Set the Number of columns to 4. Keep Number of rows at 1. Click on OK as shown in
the following screenshot:

3. Now select the first cell of the table. Hold down the Shift key and select the last cell
of the table. This should select all the cells.

4. From the menu, select Table / Merge Cells. This will merge four cells into one.

5. Now unlock the report objects. Select the report title and drag it inside the table.

6. Change the text font and size appropriately.

7. Run the report in Excel to test it. As you can see in the following screenshot, the title
will now be shown in merged cells and hence the first column won't be stretched:

Chapter 4

109

How it works...
When we merge the cells of a table, this is remembered in the report specification in the form
of a column span. In our example, the report spec says <tableCell colSpan="4">. When
the report runs in Excel form, this is properly translated into merged cells.

Not many developers know about this feature, but it is a very useful one. After reading this,
you will use it in many real-life scenarios.

Worksheet name in Excel output
A report has three list report objects (Sales by products, Sales by region, and Sales by order
method). Users prefer to access it in Excel format.

They want the three reports to be populated on three different sheets and each sheet should
be named appropriately.

Getting ready
Create a report with three list report objects and pull appropriate columns in each.

The Report Page – Tips and Tricks

110

How to do it...
To generate different names for the sheets in Excel, we will create different pages in the
report and give each page a meaningful name.

1. Open Page Explorer and add two new Page objects as shown in the
following screenshot:

2. Select each of them and change their names in properties to the names shown in the
following screenshot:

3. Now cut the list objects from the first page and paste in the appropriate report page.

4. Run the report in Excel to test it as shown in the following screenshot:

As you can see, Cognos produces three sheets with the names the same as what we defined
for Page name (with an auto-incrementing number appended). Each sheet will show the list
object we placed in the corresponding page.

Chapter 4

111

How it works...
When we generate the report in Excel format, the name of the worksheet matches the name
of the page in Report Studio. A number is appended to make sure that names are unique.
This is useful for long reports where one page will span multiple sheets.

There's more...
There is a lot of demand for dynamic sheet names. For example, if we create a page set for
products so that Cognos will create one sheet per product, then we can expect to name the
sheets by products.

However, there is currently no facility to define such dynamic names (data item or expression).
Some users have requested this enhancement to IBM and this feature might be added in a
future version of CRS.

Conditional column titles
This recipe is meant to introduce you to the Text Source Variable property.

Let's say there is a crosstab report that shows sales quantity by order method (rows)
and months (columns). We need to conditionally show full month names or short names
depending on the user's selection on the prompt page.

Getting ready
Create a crosstab report with Order method / Order method type on rows, Time (ship Date) /
Month (ship date) on columns and Sales fact / Quantity in the intersection.

Create a value prompt on the prompt page with the following specification:

 f Static choices: Full name, short name

 f Parameter name: Choice

 f User Interface (UI): Radio button group

The Report Page – Tips and Tricks

112

How to do it...
To conditionally show full month names or short names depending on the user's selection on
the prompt page, we will use the Text Source Variable property.

1. Go to Conditional Explorer and create a Boolean variable. Call it Is_FullName and
define it as ParamDisplayValue('choice') = 'Full Name' as shown in the
following screenshot:

2. Now go to the report page and select <#Month (ship date)#> from the column titles.
Set its Text Source Variable to Is_FullName as shown in the following screenshot:

3. From Conditional Explorer, choose the Yes condition for the variable. This will allow
you to define the text for columns. Set the Source Type to Data Item Value. Choose
Month (ship date) as Data Item Value as shown in the following screenshot:

Chapter 4

113

4. Now choose the No condition for the Boolean variable. Set the Source Type for
the <Month (ship date)> column to report expression. Define the expression as
substring([Query1].[Month (ship date)], 1, 3).

The Report Page – Tips and Tricks

114

5. Run the report to test it as shown in the following screenshot:

How it works...
Here we are using the Text Source Variable property to link the text being shown in column
titles to the conditional variable.

Once the variable is defined for each condition, we can define a static text, a data item value,
or a report expression to be shown in the column title. This way we can conditionally change
the column titles. The same can be applied to row titles as well.

5
Working with XML

In this chapter, we will cover the following:

 f Changing drill links quickly

 f Copying and pasting drill links

 f Removing references to old packages or items

 f A hidden gem in XML – row level formatting

Introduction
This chapter will show some advanced techniques that involve changing the XML specification
of a report outside of Report Studio. This is a common practice among experienced report
writers. It often saves a lot of time and also provides some functionality that is not available
in Report Studio.

You should preferably have an XML editor application for this. I have used Visual Studio.
The advantages of using an XML editor are visual aids to help XML editing, automatic tag
completion, tree like expand-collapse functionality, and easy search and replace. However,
if you don't have one, you can also use any generic text editor for these recipes, for example,
Textpad or Notepad.

If you don't know anything about XML, it would be worth reading about it on the Internet.
There are websites like www.xmlfiles.com and www.w3schools.com/xml that are good
for basic understanding and practice. After reading about XML and following the recipes
step-by-step, you will not only be able to perform the actions covered in this chapter, but
you will also have the confidence to do more XML editing of reports on your own.

It is advisable to make a backup of the original report before replacing it with an XML-modified
one outside Report Studio.

Working with XML

116

Changing drill targets quickly
While the project is in the development stage, many things can change. Files are moved,
folders are renamed, and sometimes requirements change. This often results in reworking.

Assume that a crosstab report has been designed to drill to a target report from an
intersection. The drill target report accepts many parameters and their mapping is
already done. However, because of some changes in business requirements, the drill
from intersection now needs to go to another report that is already designed to accept
the same parameters; we only need to change the target in the main report.

In this recipe, we will see how to quickly change the target report for a drill-through definition
without the need to map the parameters again.

Getting ready
Create a crosstab report and save it as Report 5.1 -Drill from crosstab
intersection as shown in the following screenshot:

Create a drill-through link from the crosstab intersection to a list report and pass multiple
values. Save this report as Report 5.1 - Drill from crosstab intersection
Drill 2 as shown in the following screenshot:

Create one more copy of the previous report and save it as Report 5.1 - Drill from
crosstab intersection Drill 1.

So, now we have the folder structure.

The main report (Report 5.1 -Drill from crosstab intersection) has been
designed to call Report 5.1 - Drill from crosstab intersection Drill 2. We
will change it to call Report 5.1 - Drill from crosstab intersection Drill 1
instead by editing the XML. This way we will not have to define the parameter mapping again
and it will save the developer time.

Chapter 5

117

How to do it...
In this recipe, we will see how to quickly change the target report for a drill-through definition
without the need to map the parameters again by modifying the XML specification of the
report as seen in the following steps:

1. Open the main report in Report Studio.

2. Unlock the report objects and select the crosstab intersection. Click on the
Drill-through Definition1 button on the toolbar and examine the drill-target
as shown in the following screenshot:

Notice that the drill-through has been designed to go to Report 5.1 - Drill from
crosstab intersection Drill 2 and pass two parameters called Month and
Order Method. In real life, you will usually have many parameters passed.

Working with XML

118

3. Now close the dialog box. Navigate to the Tools | CopyReporttoClipboard option
from the menu. This will copy the XML specification of the report on to the clipboard
as shown in the following screenshot:

4. A pop-up screen will appear with the report XML specifications. Copy it.

5. Note that the previous screen will appear only if you are using Firefox to open Report
Studio. If you are using Internet Explorer, the XML specifications will be copied directly
to the clipboard.

6. Open any text editor or XML editor and paste the XML specifications.

7. Now go to Cognos Connection. For the Report 5.1 - Drill from Crosstab
intersection Drill 1 report, click on the Set Properties Report 5.1 button as
shown in the following screenshot:

Chapter 5

119

8. Click on the View search path link as shown in the following screenshot:

9. A dialog box will pop up with the following information. Select the content in Search
path and copy it as shown in the following screenshot:

Working with XML

120

10. Go back to the XML specification pasted into the text or XML editor. Replace all the
report paths referring to Drill 2 with that of Drill 1. In our recipe, we will search
for all instances of:
/content/folder[@name='Samples']/folder[@name='Models']/
package[@name='GO Data Warehouse (query)']/folder[@name='My
Reports']/folder[@name='Chapter 5']/report[@name='Report 5.1 -
Drill from crosstab intersection Drill 2']

And replace them with:

/content/folder[@name='Samples']/folder[@name='Models']/
package[@name='GO Data Warehouse (query)']/folder[@name='My
Reports']/folder[@name='Chapter 5']/report[@name='Report 5.1 -
Drill from crosstab intersection Drill 1']

11. Now copy the whole XML specification (the modified one) onto the clipboard.

12. Go back to Report Studio and choose the Tools | OpenReportfromClipboard option
as shown in the following screenshot:

Chapter 5

121

13. A pop-up screen will appear. Paste the copied report XML specifications and then
click on OK as shown in the following screenshot:

14. Check the drill-through target again. It should have changed to Drill 1 with all the
parameters still mapped correctly.

15. Save the report as the main report.

Working with XML

122

How it works...
In Report Studio if you change the target report for an existing drill-through definition, then you
will have to redefine the parameter mapping. Here we are achieving that without the need to
redefine the mapping.

For that we are directly modifying the XML specification of the report. When we copy a report
to the clipboard, its XML specification is copied. We then edit it in an editor and replace all the
references to the Drill 2 report with references to the Drill 1 report.

Finally, we copy the modified XML back into Report Studio and find that the drill target is
successfully changed.

There's more...
It is advisable to use an XML editor rather than a normal text editor as it allows you to
understand the tags better and hence reduces the chances of errors.

You can explore the <reportDrills> tag more and try changing different properties/
members within that.

Copying and pasting drill links
Let's say that a crosstab report shows Sales Quantity by quarter (rows), Product line
(columns), and Order method (columns). The report has several filters.

There is a drill-through report which is to be called from the report columns, that is,
Product line and Order method. When called, all the filter values are to be passed.

In this recipe, we will see how to define the drill-through and parameter mapping once
and then copy and paste it for other drills, thereby reducing the development time.

Getting ready
Create a crosstab report to be used as the main report in the following format:

Define all the prompts and filters on the main report.

Chapter 5

123

Now create a drill report that will accept all these parameters and additional information like
Product line and Order method type. This is shown as follows:

How to do it...
Here we will see how to define the drill-through and parameter mapping once and then
copy and paste it for other drills by modifying the XML specifications. Perform the
following steps:

1. We will start by defining the drill-through from the Product line columns.
Do it manually from Report Studio in a conventional way. Map all the
parameters appropriately as shown in the following screenshot:

Working with XML

124

2. Now select the Order method column title. Create a drill-through link and select the
target report. Don't do the parameter mapping. We are not doing the mapping here
as we will copy and paste it in later steps to reduce development time.

3. Select Copyreporttoclipboard from the menu and paste it in a new file in the XML
editor. I used Visual Studio for this.

4. Look for the <drillTargetContext> tag. This will help you find the correct
drill from Product line (which has all the mapping done) as shown in the
following screenshot:

Chapter 5

125

5. Copy the whole <reportDrill> element (that is, everything from the
<reportDrill> tag to the </reportDrill> tag).

6. Now look for the <reportDrills> tag and search for the one that relates to order
method. This one doesn't have the mapping defined.

7. Replace the existing <reportDrill> element with the one copied in step 5.

8. Copy the whole XML specification back onto the clipboard and open it in Report
Studio. Examine the drill-through from the Order method type column titles.

9. You will see that the mapping is now successfully copied. Make appropriate changes
to it if required. Here, we will pass Order method instead of Product line as shown in
the following screenshot:

10. Run the report to test it.

Working with XML

126

How it works...
This recipe is extremely useful when a report has many drill links and lots of parameters to be
passed in each drill.

We define the parameter mapping for one drill link which gets saved in the corresponding
<reportDrill> element. Then, we define other drill links without doing the parameter
mapping. Finally, we copy the XML elements in the editor which in turn copies the parameter
mapping across.

There's more...
This recipe might look tedious at first glance, but once you practice it, you will realize that it is
useful in big reports with loads of drill links. Also, once you examine the <reportDrills>
element carefully from the XML, you will understand how Cognos Report Studio stores the
drilling information. This will be useful in writing your own utilities to parse or modify the
report specification.

Removing references to old packages or
items

As a part of development, a framework model might need changes. Often, the package
names, namespaces names, and query subject names are changed. Sometimes, when the
report is moved to another environment, such differences are encountered. This results in
errors and needs every data item to be redefined.

In this recipe, we will see how to quickly change all the references without redefining all
the data items.

Getting ready
Take any report that is working fine and verify that it is without any errors. We will take one
report based on the GO Data Warehouse (query) package.

How to do it...
The idea here is to remove these references from the XML specifications of the report.
To do this, perform the following steps:

1. Open the framework model for the GO Data Warehouse (query) package. Change
the name of the namespace being used by the report. Here we will change the
Sales(query) namespace to Sales Renamed.

Chapter 5

127

2. Rename the package GO Data Warehouse (query) to GO Data Warehouse
Renamed and publish it.

3. Now open the report and change its package connection to GO Data Warehouse
Renamed. This will start the report validation and will return with errors as shown in
the following screenshot:

4. Examine the error detail and you will notice that it has a reference to the namespace
that is now renamed as shown in the following screenshot:

5. Now copy the report to the clipboard and paste it into your XML editor.

Working with XML

128

6. Replace all instances of [Sales (query)] with [Sales Renamed] as shown in
the following screenshot:

Copy the report back into the clipboard and open it in Report Studio.

7. Verify the report. It should validate with no errors.

How it works...
The data items are stored in the report specification in the following format:

[Namespace Name].[Query Subject].[Query Item]

The folder names are not stored. Hence, if the folder names are changed in the framework
model, the reports can function fine without any change. However, if the namespace, query
subject, or query item is renamed, the report needs to be updated.

Here, namespace is renamed. This is referenced many times in the report (in every data
item). Manually changing it in Report Studio is a tedious job. Hence, we are opening the
report specification in the XML editor and doing a simple search and replace operation to
change all the references.

A hidden gem in XML – row level formatting
As you now know, a Cognos report is an XML definition. When you create or update a
report in Report Studio, the corresponding XML tags are added to or modified in the report
specification. However, it is possible to directly add or modify XML tags that are not visible
from the Studio as an object or property.

In this recipe, we will see how to define crosstab row level formatting in the XML to reduce
development and maintenance time.

Chapter 5

129

Assume that there is a crosstab report with many measures on columns. The business
wants to highlight the rows that belong to costly products (>25 units). Instead of defining
conditional formatting for every column, we will modify the XML here to directly define row
level formatting.

Getting ready
Create a report with product name on rows and various measures on columns, shown
as follows:

How to do it...
In this recipe, we will see how to define crosstab row level formatting in the XML, which can
save a lot of time during the development and maintenance of reports.

1. Define a conditional variable of Boolean type to identify costly products (which are to
be highlighted in the report) as shown in the following screenshot:

Call this variable Is_Costly.

Working with XML

130

2. Now select the first column Quantity. Attach the conditional variable Is_Costly to
it as Style variable. Define the appropriate formatting for this column for both the
conditions (Yes and No). We have already talked about defining conditional styles
in prior chapters.

3. Now copy the report to the clipboard and paste in a new file in an XML editor. I have
used Visual Studio for this purpose.

4. Run a search for the <conditionalStyles> tag. You will find this element under
the Quantity data item.

5. Copy the whole element, that is, from <conditionalStyles> to </
conditionalStyles>. This should be something as shown in the following code:
<conditionalStyles>
 <conditionalStyleCases refVariable="Is_Costly">
 <conditionalStyle refVariableValue="1">
 <CSS value="background-color:lime"/>
 </conditionalStyle>
 </conditionalStyleCases>
 <conditionalStyleDefault>
 <CSS value="background-color:yellow"/>
 </conditionalStyleDefault>
</conditionalStyles>

6. Now locate the <crosstabRows> element. You will see that it has a
<crosstabNodeMember> defined for Product.

7. Under the Product crosstab node, you will find another tag called
<crosstabFactCell>, which contains two nodes, <contents> and <style>,
as shown in the following code:
<crosstabFactCell>
 <contents>
 <textItem><dataSource><cellValue/></dataSource></textItem>
 </contents>
 <style>
 <defaultStyles><defaultStyle refStyle="mv"/></defaultStyles>
 </style>
</crosstabFactCell>

8. Now replace the <style> tag with the <conditionalStyles> tag copied in
step 5. The code will now look like the following:
<crosstabFactCell>
 <contents>
 <textItem><dataSource><cellValue/></dataSource></textItem>
 </contents>
 <conditionalStyles>
 <conditionalStyleCases refVariable="Is_Costly">

Chapter 5

131

 <conditionalStyle refVariableValue="1">
 <CSS value="background-color:lime"/>
 </conditionalStyle>
 </conditionalStyleCases>
 <conditionalStyleDefault>
 <CSS value="background-color:yellow"/>
 </conditionalStyleDefault>
 </conditionalStyles>
</crosstabFactCell>

9. Copy the whole XML back onto the clipboard and open it in Report Studio.

10. Run the report to test it.

As you can see, the whole row is formatted based on the condition.

How it works...
In Report Studio, there is no option to select and modify the whole row in a crosstab. Hence,
if we want to do any row level formatting, we need to do it for each column.

However, if you examine the XML report, you will notice that it has an element for fact cells
under crosstab rows. Here, we are overriding this element and defining our own style to be
applied for every fact cell within that row.

Working with XML

132

Instead of manually writing the whole conditional style code, we have first applied conditional
styling on one column (Quantity) and then copied the same under Crosstab rows so that it is
applied on all the columns.

There's more...
This recipe will save your development time as you don't have to define the conditional styling
for every column. Also, in the future if styling needs to be changed, it can be changed from
just one place rather than doing so for every column. Hence, it will save maintenance time
as well.

You can also experiment with the <crosstabColumns> tag to style the whole column when
there are multiple members on rows.

See also
 f The Formatting data – dates, numbers, and percentages recipe in Chapter 1,

Report Authoring Basic Concepts

6
Writing Printable

Reports

In this chapter, we will cover the following:

 f Controlling the container size and rows per page

 f Eliminating orphan rows

 f Defining page orientation and size (and overriding them for one page)

 f Avoiding page title repetition

 f Horizontal pagination

 f Page numbering with horizontal pagination

 f Choosing the output format from a prompt

 f Choosing the right colors

 f Defining page sets

 f Cautions about HTML items and JavaScript files

 f Displaying the report name in a footer

Introduction
Let's assume that the business' reports need to be printed or exported in PDF for sharing
and printing purposes. This part is often ignored while defining the technical specification
and the actual development of reports. This chapter will give you some tips and will show you
the options within the Studio that you should use during development to make your reports
more printable.

Writing Printable Reports

134

Controlling the container size and rows
per page

In this recipe, we will examine the various options regarding the data container size and rows
per page.

Getting ready
Create a simple list report with product attributes and sales quantity as columns:

Define grouping and aggregation as shown previously.

How to do it...
To control the size of the list table and the number of rows per page, change the properties
of the report. To do this, perform the following steps:

1. On the report page, click on any column from the list.

2. Using the Ancestor button, select Whole List from the Properties tab.

3. Set Rows Per Page to 50 as shown in the following screenshot:

Chapter 6

135

4. Now open the Size & Overflow property. Set the width of the list to 100% as shown in
the following screenshot:

5. Run the report in HTML and PDF formats to test it as shown in the
following screenshot:

6. Save the report for use in the next recipe.

How it works...
You will notice in the output that the HTML report shows 50 rows per page. There is a scrollbar
on the right for browsing the report page, whereas in PDF it only shows a full page of rows
per page.

In practice, the two most frequently used output formats by users are HTML and PDF.
HTML is great for interactivity and speed, whereas PDF is useful for printing.

Writing Printable Reports

136

When reports are run in the HTML format, by default, they show 20 rows per page. Users can
then click on the Next Page link to go to the next page. This can sometimes be tedious as it
is easier to see more information on one page and scroll down than it is to click on the Next
Page link every time. Here, we achieve that by setting the Rows Per Page property of the list
container. This ensures there are less user-clicks required to browse the whole data.

The beauty of this feature is that it doesn't affect the PDF output. The PDF generated will still
show only the appropriate number of rows to be filled on each page. Hence, the text is still
readable and the report is printable.

The Size & Overflow property of the list is also very useful to make it presentable. Here,
we are setting the width to 100 percent so that the list is stretched to cover the page width.
The columns are appropriately distributed across the page width. This is commonly used in
business reporting, though some companies prefer non-stretched, center-aligned lists.

Please note that this feature is not particularly useful if users would prefer
the report output in the Excel format because this will spread the report over
multiple sheets, each having only the specified number of rows.

There's more...
Please take some time to explore other Size & Overflow properties. The following screenshot
shows a piece of information which is found in the Cognos Help and gives you something to
experiment with:

Chapter 6

137

Eliminating orphan rows
When a grouped report with a header or footer is generated with equal number of rows per
page, it might create some orphan rows. Please refer the following screenshot:

As you can see, the totals row for Camping Equipment has moved on to the next page and
looks like an orphan. In this recipe, we will show you how to solve such issues of orphan rows.

Getting ready
We will use the report that we created in the previous recipe.

How to do it...
To complete this recipe, we have to specify in the list properties the number of rows to keep
with the footer. To do this, perform the following steps:

1. Open the report from the location where you saved it in the previous recipe. In
Cognos Report Studio, open the report page. Select any column in the list.

2. Using the Ancestor button, select the List object.

Writing Printable Reports

138

3. Open the Pagination property and set Keep with footer to 5 as shown in the
following screenshot:

4. Run the report to test it as shown in the following screenshot:

Chapter 6

139

How it works...
As you can see in the previous screenshot, Cognos moved five rows on to the next page to
connect to the Camping Equipment - Total row.

The property Keep with footer specifies how many rows need to be with the footer so that it
doesn't stand out as an orphan. This setting will take precedence over the Rows Per Page.

There's more...
If there is a group header, you can also use the Keep with header property to make sure that
the header row is not left as an orphan.

Defining page orientation and size (and
overriding them for one page)

In this recipe, we will see how to specify page orientation and size to achieve better printouts.
We will also see how to override these settings for certain pages.

Getting ready
Use the report created in the previous recipe.

Add a new report page called Title and use it to define the title page at the beginning of
the report.

Writing Printable Reports

140

How to do it...
It is a common request for printable reports to control the report orientation. Here is how to
do this:

1. Open the report in Report Studio. From the menu, choose File | PDF Page Setup as
shown in the following screenshot:

2. Define the Orientation as Landscape and Paper Size as Letter as shown in the
following screenshot:

3. Now open Page Explorer and open the Title page.

4. Select any object on the page. Using the Ancestor button from Properties, choose
the Page object.

5. Open its PDF Page Setup property.

Chapter 6

141

6. Select the Override the page setup for this page option and set the Orientation to
Portrait and size to A4 as shown in the following screenshot:

7. Run the report in PDF format and check the output.

Writing Printable Reports

142

How it works...
This is quite a self-explanatory and menu-driven functionality. With Cognos 8.3 onwards,
it is called PDF Page Setup. In earlier versions, it was just called Page Setup.

The sizes and orientations that I have mentioned in the recipe are for example purposes.
You should choose the ones that are standard in your organization.

Avoiding page title repetition
The report title defined in the page header is repeated on every page. Let's say that the
business owners want it to appear only on the first page. This recipe will show you how to
achieve this.

Getting ready
We will use the report created in the previous recipe.

How to do it...
The business owners want the title of the report to appear only on the first page. To do this,
perform the following steps:

1. We will start by deleting the title from the page header, as this object repeats on
every page.

2. Now select the List object and open the List Headers & Footers... dialog from the
toolbar or menu as shown in the following screenshot:

Chapter 6

143

3. Check the option of Overall header and click on the OK button as shown in the
following screenshot:

4. From the properties of the list, define Column Titles as At start of details as shown
in the following screenshot:

Writing Printable Reports

144

5. Now select the newly added header row from the start of the list. Add the required
title to it and define formatting (font size, alignment, and so on) as shown in the
following screenshot:

6. Run the report to test it.

How it works...
Anything we add to the page header and page footer is repeated on every page.
This consumes space and ink on the PDF output used for printing.

Hence, we use the Overall header option for the list which is shown only once—at the
beginning of the list header.

There's more...
The Summary or Grand Total shown for the quantity itself is the Overall list footer here.
Hence, if there are any objects that you would like to show at the end of the report,
you need to add one more footer line.

This can be done by selecting Insert List Row Cells Below... as shown in the
following screenshot:

Chapter 6

145

Horizontal pagination
The horizontal pagination feature is made available only from IBM Cognos Version 8.4. It is
very useful for printing a very wide report and hence this recipe will show you how to use it.

Earlier versions of Cognos used to fit all report columns in one report width. Hence, in spite
of selecting the Landscape orientation, some very wide reports had to be sized down, leaving
them difficult to read. Now, we can choose to span the columns across the pages and hence
keep the size intact and readable.

Getting ready
We will use the report created in the previous recipe. In order to mimic the idea that the
report can't fit in one page width, we will change the PDF Page Setup as shown in the
following screenshot:

Writing Printable Reports

146

How to do it...
Our report will not fit on one page. To solve this we can change the properties of the list
report. To do this, perform the following steps:

1. Open the report in Report Studio.

2. Select the List object using the Ancestor button.

3. From the Properties window, open the Pagination dialog box.

4. Ensure that the Allow horizontal pagination option is checked as shown in the
following screenshot:

5. Run the report in PDF format to test it as shown in the following screenshot:

Chapter 6

147

How it works...
This is again a straightforward and menu-driven feature. When a report can't fit in one page
width, and if the Allow horizontal pagination option is checked, Cognos will span the columns
across multiple pages.

They can then be printed and easily referred to side-by-side, which is much better than sizing
the contents down and making them unreadable!

There's more...
You can choose a column and define its Pagination to Repeat every page. That column
will then repeat on every page when a report spans many pages horizontally. Columns like
Serial Number or Order Number can be set to this, which will make reading the printouts
(side-by-side) easier.

Page numbering with horizontal pagination
Let's assume that there is a report that is very wide as well as long. It is decided that
horizontal pagination will be used so that the report is printed over multiple A4 sheets with
big readable fonts. However, when this report is printed, it is very difficult for the users to
understand how they stitch together horizontally, and when actually a new page starts.
Let's see how to solve this issue using appropriate page numbering.

Getting ready
Open the Sales report with horizontal pagination prepared in the previous recipe.

How to do it...
We want to modify the report that we created in the previous recipe to include page numbers
so that it can be easier for users to work with the report. We can do this by changing the
properties of the report page as we will see in the following steps:

1. Click anywhere on the report page and choose PAGE from the Select Ancestor
Properties pane.

Writing Printable Reports

148

2. Open the Pagination property and check the Enable horizontal page numbering
option as shown in the following screenshot:

3. By default, there will be a Page Number object in Page Footer. If you can't find it,
you can insert a new Page Number object from the toolbox.

4. Select this Page Number object and from its Properties, choose Number Style as
1-a as shown in the following screenshot:

5. Now run the report to see how page numbers appear in the footer. Notice that for the
first page split over multiple sheets, the footer displays 1-a, 1-b, 1-c, and so on. When
the next report page starts, the numbering changes to 2-a, 2-b, 2-c, and so on.

How it works...
By enabling horizontal page numbering, we are making sure that Cognos generates
appropriate page numbers with subsections to clearly show how pages are split over
multiple sheets horizontally.

Chapter 6

149

Choosing the output format from a prompt
After all of the previous recipes, you must have understood by now that reports need to be
generated in the PDF format for printing purposes.

The default output format is HTML, which is good for interactive reports with drill-downs and
drill-throughs. However, it is not printer friendly. They would see one page of output at a time
with navigation links at the bottom of the screen, and hence printing the whole report is not
straightforward. For printing, users need to run the report in PDF format. Clicking on the PDF
icon resubmits the report query and users have to wait for the execution to finish.

It will be handy to control the report output from a prompt page. In this recipe, we will add a
prompt control which asks users to specify the output format. This way, users can think of
the application beforehand (interactive, printing, analysis, and so on) and decide whether
the output should be HTML, PDF, Excel, or something else.

Getting ready
We will use the list report that we created in the previous recipe.

How to do it...
In this recipe, we will use JavaScript to create the required prompt as we can see in the
following steps:

1. Open the report in Report Studio.

2. Add a new prompt page to the report from Page Explorer.

3. Open the prompt page and insert a new HTML item in the page body.

4. Define the HTML item as follows:
<html>
<head>
<script language="javascript">
function gotoUrl()
{var obj=document.all['OutputFormat'];
/* Below function passed the selected output format to the server
*/
window.onload(gCognosViewer.getRV().viewReport(obj.options[obj.
selectedIndex].value));
}
 </script>
</head>
<body>
<!-- Below will create a dropdown with choices -->

Writing Printable Reports

150

 <select name="OutputFormat" OnBlur="javascript:gotoUrl()">
<option value="HTML">HTML</option>
<option value="PDF">PDF</option>
<option value="singleXLS">Excel 2000 Single Sheet</option>
<option value="spreadsheetML">Excel 2007</option>
<option value="XLWA">Excel 2002</option>
<option value="XLS">Excel 2000</option>
<option value="CSV">Delimited text (CSV)</option>
<option value="XML">XML</option>
</select>
</body>
</html>

5. Run the report to test it as shown in the following screenshot:

How it works...
This script displayed various output format options in a dropdown. Whatever is selected by
the user is passed to the viewer application. This way, we can control the output format
from a prompt page.

There's more...
Instead of giving all the formats as options, you can narrow it down to only HTML, PDF, and
Excel. Alternatively, you can also put a checkbox for Printable, and if the user selects it, pass
the value as PDF or otherwise HTML.

Chapter 6

151

Choosing the right colors
Let's say that most of the business' reports are printed on a grayscale printer. This recipe will
highlight the importance of choosing the right colors when reports are meant for printing.

Getting ready
We will use the report used in all the previous recipes for this recipe.

How to do it...
We want to examine the effect of the colors used on the printable reports. To do this, perform
the following steps:

1. Open the report in Report Studio. Select the list column titles.

2. From Properties, open the Background Color dialog. Go to the Web Safe Colors tab.

3. Select the #CC99FF color (sixth column, tenth row).

4. Now select the product line footer (sub total) row and set its background color to
#CCFF33 (thirteenth column, tenth row).

Writing Printable Reports

152

5. Run the report and examine colors. Now print the report and examine colors. You will
notice that though both the colors are very different (one is a shade of green and the
other is purple), they look almost the same on the grayscale printout.

6. Now change the list column titles to any color from the ninth or eleventh row. Print the
output and you will see that the colors are distinguishable.

How it works...
If you print the whole palette on a grayscale printer, you will notice that rows have alternating
light and dark shades. Hence, any two cells from the same row will have very similar
output, but those from neighboring rows will have distinguishable shades as shown
in the following screenshot:

Hence you should always choose one color from an odd numbered row and the other color
from an even numbered row.

There's more...
It is good practice to choose a color from a palette rather than defining a custom RGB color.
This ensures that the colors can be correctly shown to most output formats.

Chapter 6

153

Defining page sets
In a grouped report, it might be sensible to start a new group at a new page. In this recipe,
we will see how to achieve this for the product line grouping.

Getting ready
We will use the report generated in the previous recipe for this recipe.

How to do it...
In this recipe, we want to start each new group on a new page. To do this perform the
following steps:

1. Open the report in Report Studio and go to Page Explorer.

2. From Toolbox, drag a new Page Set.

3. Move the existing report page under this new Page Set (within Detail Pages)
as shown in the following screenshot:

4. Now select the Page Set, and from its Properties, set the Query to the one being
used from the report list (that is, Query1) as shown in the following screenshot:

Writing Printable Reports

154

5. Open the Grouping & Sorting dialog and drag the Product line under Groups as
shown in the following screenshot:

6. Now run the report to test it.

How it works...
When we create Page Set, Cognos generates the report output as a bunch of pages rather
than one continuous report. The pages are driven by the query and grouping that we defined
in the Page Set properties.

Chapter 6

155

Here, it will create a new page for every Product line. Hence, a new group will start from a new
page. This applies to HTML as well as PDF. In Excel, this will create multiple sheets.

Cautions about HTML items and JavaScript
files

This recipe shows you that the HTML items and JavaScript files used on the report page are
not executed when a report runs in PDF or Excel.

Getting ready
Open the report that we created in the Creating a variable width bar chart using JavaScript
recipe in Chapter 3, Using JavaScript Files – Tips and Tricks.

How to do it...
Here, we will run the report in both HTML and PDF format as described in the following steps:

1. Run the report in HTML format. Ensure that the bar charts are generated fine.

2. Now re-run the report in PDF format.

3. Notice that bar charts are absent from the PDF output.

How it works...
When users run the report in any format other than HTML, the prompt page generated is still
a web page. Therefore, any scripts put on the prompt page (for example, default selections)
work fine. However, when the actual report is generated, it will execute the scripts only
in HTML format. Therefore, the script actions fail in case of PDF, Excel, or any other
non-HTML output.

Displaying the report name in a footer
When you have many reports (tens or hundreds) on Cognos Portal and a user sends
you one output with some query, the first step to identify which report it is from,
becomes difficult.

Hence it is good practice to print the report name and path in the footer of all pages.
This allows quick reference to which report's output it is from when discussing over the
printed reports.

Instead of manually typing the report name and path in each report, we will use a calculation
here to avoid maintenance.

Writing Printable Reports

156

Getting ready
We will use the report generated in the previous recipe.

How to do it...
Here we can use a Layout calculation to return the report name. To do this, perform the
following steps:

1. Open the report in Report Studio.

2. From the toolbox, drag Layout Calculation into the page footer at the
appropriate place.

3. Define the calculation as follows:
ReportPath () + ' : ' + ReportName ()

4. Click on OK and change the format of this calculation to a more suitable format
(generally a small print like 7pt and gray color).

5. Run the report to check that the report path and name are displayed properly.

Chapter 6

157

How it works...
By using functions to return Report Path and Report Name, we not only avoid the need to
manually type those in, but we also avoid maintenance. In future, if a report is renamed or
moved to another folder, it automatically reflects in the footer. This proves very handy when
discussing the output in printed form (for any change or issue), as it's clear which Cognos
report it is from. It also clearly shows if the output is from a user's own MY FOLDER, which
you cannot directly access.

7
Working with

Dimensional Models

In this chapter we will cover the following:

 f List report or crosstab report

 f Filtering rows or columns

 f Filtering a whole report

 f Adding a prompt into Slicer and its limitations

 f Achieving zero suppression

 f Aggregation versus preaggregated values

 f Using the roleValue() function

 f Swapping dimensions using MUN manipulation

Introduction
This chapter will discuss some concepts that you should know when developing reports
against dimensional or DMR (Dimensionally Modeled Relational) sources. We will use
two packages in this chapter. The GO Data Warehouse (analysis) package is of DMR type,
whereas Sales and Marketing (cube) is a Cognos PowerCube-based package which is purely
dimensional in nature. Both packages come as a standard sample within the IBM Cognos
Samples installation.

Working with Dimensional Models

160

List report or crosstab report
This recipe shows that most of the time it is possible to use a crosstab report instead of a list
report and then discusses the pros and cons of each.

Getting ready
We will use the GO Data Warehouse (analysis) package for this recipe.

How to do it...
In this recipe we will start by creating a list report, and then we will create a crosstab report to
see the difference:

1. Create a new list type of report based on this package.

2. Drag columns onto the list report as follows. Create grouping and sorting for Product
line and Product:

3. Run the report to test it.

4. Now save this report and create a new report of crosstab type.

5. Drag items onto the crosstab report as follows. Define sorting on Product line
and Product:

6. Run the report to test it.

Chapter 7

161

How it works...
You will see that both the reports bring back the same data. As a rule, everything you can
do with list can be done with crosstab. It is general practice to use lists for relational models
whereas crosstabs are used for dimensional models. I believe this practice comes from
the fact that multidimensional databases (cubes) are accessed using Multidimensional
Expressions (MDX) that naturally return the data in two axes.

However, the biggest factors that drive the choice as per my opinion are:

 f Dynamicity of columns

 f Number-oriented or text-oriented

 f Report access method (HTML or not)

When the number of columns and column members are dynamic in nature and driven by
values from a dimension or query subject, you need to use crosstab.

Crosstab reports can show only numbers in the intersections. The textual fields need to be
on rows or columns. Therefore, if you need to show more textual information, you should use
a list report rather than pulling them all as nested rows on a crosstab report which will
deteriorate the performance.

List reports are better for interactive (HTML) output. As soon as Cognos receives the top 20
(or whatever the setting is) rows, the first page is displayed to the users. Therefore, it reduces
the wait time. With a crosstab report, more often than not, Cognos waits for full data before
showing even the first page.

Another point is that if you can get your report working in crosstab, then you can plot it on a
graph/chart, as it works exactly like a crosstab. Therefore, not just the data source type, but
all these factors should be considered before making your decision.

Filtering rows or columns
This recipe will show you how to filter row or column members in a crosstab report.

Getting ready
This report will be based on the dimensional source. Therefore, please use the Sales and
Marketing (cube) package for this recipe.

Working with Dimensional Models

162

How to do it...
In this recipe we will see how to filter the report by hiding the empty rows as follows:

1. Create a new crosstab report.

2. Drag Year and Month onto columns and Retailer name onto rows. Drag the Revenue
measure onto the intersection:

3. Run the report to test it. The report will look as follows:

Chapter 7

163

4. Now we will try to filter the rows so that only retailers that have data are displayed.
For that, delete Retailer name from rows.

5. Drag a new Query Calculation tool onto rows:

6. Name this set Filtered Ret and base it on the Retailers dimension. Select the
calculation type as Set expression:

Working with Dimensional Models

164

7. Define the set expression as:
filter ([sales_and_marketing].[Retailers].
 [Retailers].[Retailer name], [Revenue] is not null)

8. Now run the report to test it:

Chapter 7

165

How it works...
The Report Studio filters (summary and detail) are useful mainly with relational data sources
and list reports. With cube-based reports, you can achieve better performance by filtering the
row and column members beforehand in the expression that pulls the members.

Here we use the filter function, which allows us to define the criteria. The criteria can be
based on the member properties or measures. We used it for zero rows suppression; hence,
we filtered on the required measure. However, you can also filter on member properties,
caption, keys, and so on. It is common practice to have certain flags or categories as
member properties which can then be used for filtering depending on the user selection.

There's more...
Another way to achieve the same result is to use the already available functionality to
suppress the zero rows and columns. Please refer to the Achieving zero suppression
recipe for details.

This recipe teaches you a general concept of filtering out the members on rows and columns
which you can use for many criteria in addition to zero suppression.

Filtering a whole report
This recipe will show you how to filter the values of a whole report based on a data item that
does not appear on the report. We will filter the report created in the previous recipe to show
the values for a selected Product line.

Getting ready
We will use the report created in the previous recipe for this recipe.

How to do it...
In this recipe, we will filter the report based on a member which is not used in the report itself,
as follows:

1. Open the report in the Report Studio.

2. Go to Query Explorer and open the query used by the crosstab on the report page.

3. From the Source pane of Insertable Objects, browse for the cube for the required
member. Here we will search for Golf Equipment from the Product line hierarchy.

Working with Dimensional Models

166

4. After locating the member, drag it onto the query under Slicer:

5. Run the report to test it.

How it works...
When you want to define a context for the values or filter the values based on a dimension
which does not appear on the report, you can use Slicer.

You can drag a member or set of members under Slicer. This defines the overall context for
the query and all the numbers in the crosstab are filtered for that member or set of members.
Again, use of Slicer goes naturally with the way multi-dimensional databases are accessed.
Using a summary or a detailed filter instead of Slicer is possible, but not advisable.

There's more...
You can make the Slicer member/member set dynamic, so that users can select a value for it
from the prompt. This is covered in the next recipe.

Adding a prompt into Slicer and its
limitations

In the previous recipe, we saw that we can filter the whole report by a member or member set
using Slicer. This recipe will show you how to add a prompt into Slicer to make it dynamic.

Chapter 7

167

Getting ready
We will use the report that we created in the previous recipe for this recipe. We will need to
remove Golf Equipment used in the previous recipe from Slicer.

How to do it...
In this recipe we will see how to add a prompt into Slicer, as follows:

1. Open the Query Explorer and explore the query being used by crosstab. Remove the
Golf Equipment filter from the Slicer section.

2. From the Toolbox pane, drag a new Slicer Member Set under Slicer.

3. Define the set as:
[sales_and_marketing].[Products].[Products].[Product line]
 ->?pProductLine?

4. Run the report to test it.

Working with Dimensional Models

168

How it works...
When you run the report, you will set Cognos to automatically prompt you to select a
Product line value. When you select one, the report runs and pulls data for the selected
Product line value.

Here, we are using Slicer for the same application as in the previous recipe. However,
instead of hard-coding a particular member, we are making it prompt-driven. The first part
of the expression (before the pointer (->)) defines the hierarchy. The second part is the
parameter name which is dynamically replaced by Member Unique Name (MUN) based
on your selection.

There's more...
You will notice that you can select only one value for Product line. This is because the
expression expects only one member. However, it is possible to make it multi-select.
For that, put the expression within the Set() function.

Chapter 7

169

Now when you run the report, you will be prompted for Product line and you will be able to
select more than one value.

It's good practice to define your own prompt on the prompt page instead of letting Cognos
generate the prompt at runtime. That way, you can have control on the appearance, ordering,
and performance of the prompt page.

More Info
The biggest issue with Slicer is that you cannot make it optional. It works like a mandatory
filter. There is a workaround to this which involves using the Prompt Macro functions.
However, that adds complexity to the code. Instead, you can add a TREE PROMPT object to
display the prompt values and users can select the Root members or All members option,
which effectively means no filtering for that dimension. In our example, if we run the report for
ALL PRODUCTS from the Products dimension, we are effectively seeing data for Product line
without any filter.

Achieving zero suppression
We have already seen one way of suppressing zero rows in the Filtering rows or columns
recipe. This recipe will show other possible ways to achieve zero suppression.

Getting ready
We will use the same report used in the Filtering rows or columns recipe, for this recipe.

How to do it...
In this recipe we will use the Crosstab properties to suppress zeros from the report as follows:

1. Open the report and remove the Expression Definition created in the original recipe
and add Retailer name.

2. Now, select anything on the crosstab, and using the Ancestor button from the
Properties tab, select the crosstab.

Working with Dimensional Models

170

3. Open its Suppression property:

4. Select the Rows only option for Suppression and keep the appropriate
checkboxes checked:

5. Run the report to test it.

How it works...
When you run the report, you will see that only those Retailers which have some data appear
on the rows. This effect is the same as the filtering we had achieved by using the calculated
member set.

Chapter 7

171

I would say this is one of the most useful features you can choose to suppress only rows, only
columns, both, or none. Also, you can choose whether you want to suppress zeros or divide by
zero, missing values, or overflow values.

There's more...
If there is only one data container on the report, you can set the suppression options from the
menu also. For that, go to Data | Suppress and choose the appropriate option:

You can also use the Suppress icon from the toolbar:

Aggregation versus preaggregated values
The biggest advantage of using a cube as a data source is their capability to pre-aggregate
values. This recipe will show you how to exploit this feature of cubes in your Cognos reports.

Working with Dimensional Models

172

Getting ready
Create a simple crosstab report using the Sales and Marketing (cube) package. Drag
Retailer name and Retailer site onto rows and Year onto columns. Drag Revenue onto
the intersection.

How to do it...
In this recipe we will start by creating the aggregation using the Aggregate button as follows:

1. First, we will create aggregation using the standard method. For that, select the
Retailer site row.

2. From the toolbar, click on the Aggregate button and choose Automatic Summary:

Chapter 7

173

3. Run the report to test it:

4. Now go back to the Report Studio. Delete the new row created for Aggregation.

5. Go to the second tab (Data Item) of Insertable Objects. Drag Retailer name again
onto the report and drop it under Retailer site and format this row to be bold; shown
as follows:

Working with Dimensional Models

174

6. Now run the report to test it:

7. Notice that the aggregated values are the same.

How it works...
The first method that we used to create aggregation rows, utilizes Cognos' aggregation
feature, which is the standard way of representing the relational data sources. However,
Cognos won't use the pre-aggregated values from the cube in this case. Instead, it will
calculate the aggregations at runtime either locally or at the database.

In order to utilize the pre-aggregation feature of the cube, we then dragged the item Retailer
name under Retailer site. That way, we make Report Studio ask for the pre-aggregated
values from the cube.

We can test that the values coming into the report from both approaches are the same
and correct. The latter approach is good practice when writing a report against cubes. It
dramatically improves the performance of the report.

There's more...
In the first approach, the aggregation row title is a static text, whereas in the second
approach, the aggregation row titles change dynamically to show the Retailer name.
Either way, you can control this by editing the Source Type property of the row title.

Chapter 7

175

The roleValue() function
This recipe will show you a useful function which you will often need while working with
dimensional and DMR models. As the purpose of this recipe is only to examine this
function, we won't consider any specific business case here.

Getting ready
Create a new list report based on the Sales and Marketing (cube) package.

How to do it...
In this recipe we will see how the roleValue() function works and how you can use it in
your reports, as follows:

1. In Source under Insertable Objects, locate Retailer name:

Working with Dimensional Models

176

2. Drag it onto the list as a new column.

3. Now, add a new data item to the list. Define it as:

roleValue('_businessKey', [Retailer name]).

4. Add two more data items and define them as follows:

roleValue('_memberCaption', [Retailer name])

roleValue('_memberUniqueName', [Retailer name])

5. Run the report to test it:

Chapter 7

177

How it works...
When defining a DMR model in the Framework Manager, the modeler can define various
columns as attributes. This roleValue() function allows you to access these attributes.
This function takes two arguments: Role and Member/Set.

There's more...
We have seen the Set(), Filter(), and roleValue() functions so far. These are OLAP
functions available for use in Report Studio when building a report against a dimensional
data source. You can find a full list of OLAP functions under DIMENSIONAL FUNCTIONS on
the Functions tab when editing any data item or creating a new calculated item. Please take
the time to go through each dimensional function, including their usage and syntax.

Swapping dimensions using MUN
manipulation

When a prompt is based on a dimension, the selected value is passed as a full qualifier
(MUN), not just the key. This results in a limitation of the prompt's use. We cannot use the
prompt to filter any other dimension. In this recipe, we will see how to override this limitation
by performing the string manipulation of MUN.

Working with Dimensional Models

178

Consider a business case where a cube has two time dimensions (say Billing date and
Transaction date). Users want a choice on the prompt page to select which time dimension to
filter on. Also, they will select a Date (Year or Month) on the prompt page, so we need to filter
the appropriate time dimension.

Getting ready
Here we will use the GO Data Warehouse (analysis) package where we have two time
dimensions that we can use in this recipe: the regular Time dimension and the Time
(ship date) dimension.

How to do it...
In this recipe we will use a value prompt to select the required dimension that will be used in
our report, as follows:

1. Firstly, we will add a value prompt (radio button) on the prompt page with Static
Choices for DimTime and DimTimeShip:

Chapter 7

179

2. Now, add a new conditional variable to link to this radio button prompt:

3. On the report page, add a conditional block and link it to the dimType variable
defined in the previous step as Block Variable.

4. Set Current Block to DimTime and add a crosstab to the block. Drag valid members
onto the crosstab as shown. Also, add text saying Sliced By DimTime Dimension…:

Working with Dimensional Models

180

5. Now, set Current Block to DimTimeShip and add a new crosstab to the
block. Drag the appropriate members onto the crosstab and add text saying
SlicedByDimTimeShip Dimension….

6. By now we have achieved a report that will show one of the two crosstabs depending
on the choice selected by the user on the radio button prompt. Now we will add the
Time Dimension prompt.

7. For that, go to the prompt page and add a tree prompt based on Time dimension.
Call the parameter DimTime.

8. Now go to the query that drives the DimTime crosstab. Add a slicer as:

[Sales].[Time].[Time].[Month] -> ?DimTime?

Chapter 7

181

9. Finally, go to the query that drives the DimTimeShip crosstab. Add a slicer as:
#substitute('Month]' , 'Month (ship date)]', substitute(
 'Time]' , 'Time (ship date)]', substitute('Time]' ,
 'Time (ship date)]' , '[Sales].[Time].[Time].
 [Month]')))#

10. Now run the report to test it. You will see that the report shows the appropriate
crosstab depending on the selection, and both crosstabs filter data on different
dimensions—though the prompt is based only on one dimension.

How it works...
The Substitute() function is a macro function to do literal replacements. It looks for
the first occurrence of the mentioned string, 'Month]' for example, and replaces it with
the substitution string –'Month (ship date)]'. As we need to replace multiple
occurrences, we need to use the Substitute() macro three times. Therefore, we
successfully changed the MUN of the selected Month member to refer to the
same member in the Month (ship date) hierarchy.

Though this recipe is very lengthy, the basic principle it shows here is the manipulation of the
MUN using macros. We are using the Substitute() function to do the appropriate string
replacements to achieve the desired MUN. We retain the KEY of the member and just change
the preceding qualifier.

You can build upon this idea to achieve many sophisticated functionalities in the reports.

See also
To learn more about slicers and adding prompts to slicers, please refer to the earlier recipes
of this chapter. Macros will be discussed in more detail in the next chapter.

8
Working with Macros

In this chapter we will cover the following:

 f Adding data-level security using the CSVIdentityMap macro

 f Using the Prompt macro in native SQL

 f Making prompts optional

 f Adding a token using macros

 f Using the prompt() and promptmany() macros in query subjects

 f Showing the prompt values in a report based on security

 f String operations to get it right

 f Showing a username in the footer

Introduction
This chapter will introduce you to an interesting and useful tool in IBM Cognos BI called
Macros. They can be used in the Framework Manager as well as the Report Studio. In this
book, we are not covering the Framework Manager; therefore, I will restrict myself to the use
of macros in the Report Studio.

Generally, macros are thought to be a way to add programming and to automate tasks in most
applications; for example, in Excel macros. However, in Cognos reporting, a macro is a way to
make some key changes in the report specification at runtime based on prompt values, user
security, and so on.

The Cognos engine understands the presence of a macro as it is written within a pair of
hashes (#). It executes the macros first and puts the result back into the report specification
like a literal string replacement. We can use this to alter data items, filters, and slicers
at runtime.

Working with Macros

184

In previous versions, it was difficult to find any information about Macro Functions within
the Report Studio. With Version 10, IBM has put a new table in the data item editor to list all
macro functions and their syntax. It can be seen as the last tab when you edit a data item or
create a new calculation:

We have already seen one example of macros in the Swapping dimensions using MUN
manipulation recipe in Chapter 7, Working with Dimensional Models. In this chapter, I will
show you more examples and introduce you to more functions which you can later build
upon to achieve sophisticated functionalities.

We will be writing some SQL against the GO Data Warehouse data source. Also, we will use
the GO Data Warehouse (query) package for some recipes.

Adding data-level security using the
CSVIdentityMap macro

Let's say that a report shows the employee names by region and country. We need to
implement data security in this report so that a user can see the records only for the country
they belong to. There are User Groups already defined on the Cognos server (in the directory)
and users are made members of appropriate groups. For this recipe, I have added my user
account to a user group called Spain.

Chapter 8

185

Getting ready
Open a new list report with GO Data Warehouse (query) as the package.

How to do it...
In this recipe, we will start by creating a new list report using the following steps:

1. Drag the appropriate columns (Country, City, and Employee name) onto the report
from the Employee by Region query subject:

2. Go to Query Explorer and drag over a new detail filter.
3. Define the filter as:

[Country] in (#CSVIdentityNameList(',')#)

Working with Macros

186

4. Run the report to test it. You will notice that a user can see only the rows of the
country/countries of which he/she is a member.

How it works...
Here we are using a macro function called CSVIdentityNameList. This function returns
a list of groups and roles that the user belongs to along with the user's account name.
Therefore, when I run the report, one of the values returned will be Spain and I will see
the data for Spain.

The function accepts a string parameter which is used as a separator in the result. Here,
we are passing a comma (,) as the separator. If a user belongs to multiple country groups,
he/she will see data for all the countries listed in the result of a macro.

There's more...
This solution, conspicuously, has its limitations. None of the user accounts or roles should
be the same as a country name, because that will wrongly show data for a country the user
does not belong to. For example, for a user called Paris, it will show data for the Paris region.
So, there need to be certain restrictions. However, you can build upon the knowledge of this
macro function and use it in many practical business scenarios.

Using the Prompt macro in native SQL
In this recipe, we will write an SQL statement to be fired on the data source. We will use the
Prompt macro to dynamically change the filter condition.

We will write a report that shows a list of employees by region and country. We will use the
Prompt macro to ask the users to enter a country name. Then, the SQL statement will search
for the employee belonging to that country.

Getting ready
Create a new blank list report with the GO Data Warehouse (query) package.

How to do it...
In this recipe we will see how to use macros to pass a parameter to an SQL statement,
as follows:

1. Go to Query Explorer and drag an SQL object onto the query subject that is linked to
the list (Query1 in most cases):

Chapter 8

187

2. Select the SQL object and ensure that great_outdoor_warehouse is selected as the
data source.

3. Open the SQL property and add the following statement:
SELECT DISTINCT "BRANCH_REGION_DIMENSION"."REGION_EN"
 "REGION" , "BRANCH_REGION_DIMENSION"."COUNTRY_EN"
 "COUNTRY" , "EMP_EMPLOYEE_DIM"."EMPLOYEE_NAME"
 "EMPLOYEE_NAME"

FROM "GOSALESDW"."GO_REGION_DIM" "BRANCH_REGION_DIMENSION",
 "GOSALESDW"."EMP_EMPLOYEE_DIM" "EMP_EMPLOYEE_DIM",
 "GOSALESDW"."GO_BRANCH_DIM" "GO_BRANCH_DIM"

WHERE ("BRANCH_REGION_DIMENSION"."COUNTRY_EN" IN (
 #PROMPT('REGION')#))

AND "BRANCH_REGION_DIMENSION"."COUNTRY_CODE" =
 "GO_BRANCH_DIM"."COUNTRY_CODE" AND "EMP_EMPLOYEE_DIM".
 "BRANCH_CODE" = "GO_BRANCH_DIM"."BRANCH_CODE"

4. Hit the OK button. This will validate the query and will close the dialog box. You will
see that three data items (Region, Country, and Employee_Name) are added
to Query1.

5. Now go to the report page. Drag these data items onto the list and run the report to
test it.

Working with Macros

188

How it works...
Here we are using the Prompt macro in a native SQL statement. Native SQL allows us to
directly fire a query on the data source and use the result on the report. This is useful in
certain scenarios where we don't need to define any Framework Model. If you examine
the SQL statement, you will notice that it is a very simple one that joins three tables and
returns the appropriate columns. We have added a filter condition on country name which
is supposed to dynamically change depending on the value entered by the user.

The macro function that we have used here is PROMPT(). As the name suggests, it is used to
generate a prompt and returns the parameter value back to be used in an SQL statement.

The PROMPT() function takes five arguments. The first argument is the parameter name, and
this is mandatory. It allows us to link a prompt page object (value prompt, date prompt, and
so on) to the PROMPT() function. The rest of the four arguments are optional and we are not
using them here. You will read about them in the next recipe.

Please note that we also have the option of adding a detail filter in the
query subject instead of using the Prompt macro within the query. However,
sometimes you would want to filter a table before joining it with other tables.
In that case, using the Prompt macro within the query helps.

There's more...
Similar to the PROMPT() function, there is a PROMPTMANY() macro function. This works
in exactly the same way and allows users to enter multiple values for the parameter. Those
values are returned as a comma-separated list.

Making prompts optional
The previous recipe showed you how to generate a prompt through a macro. In this recipe,
we will see how to make them optional using other arguments of the function.

We will generate two simple list reports, both based on a native SQL. These lists will show
product details for a selected product line. However, the product line prompt will be made
optional using two different approaches.

Chapter 8

189

Getting ready
Create a report with two simple list objects based on native SQL. For that, create the query
subjects in the same way as we did in the previous recipe. Use the following query in the
SQL objects:

SELECT DISTINCT "SLS_PRODUCT_LINE_LOOKUP"."PRODUCT_LINE_EN"
"PRODUCT_LINE" , "SLS_PRODUCT_LOOKUP"."PRODUCT_NAME"
"PRODUCT_NAME" , "SLS_PRODUCT_COLOR_LOOKUP"."PRODUCT_COLOR_EN"
"PRODUCT_COLOR" , "SLS_PRODUCT_SIZE_LOOKUP"."PRODUCT_SIZE_EN"
"PRODUCT_SIZE"

 FROM "GOSALESDW"."SLS_PRODUCT_DIM" "SLS_PRODUCT_DIM",
"GOSALESDW"."SLS_PRODUCT_LINE_LOOKUP" "SLS_PRODUCT_LINE_LOOKUP",
"GOSALESDW"."SLS_PRODUCT_TYPE_LOOKUP" "SLS_PRODUCT_TYPE_LOOKUP",
"GOSALESDW"."SLS_PRODUCT_LOOKUP" "SLS_PRODUCT_LOOKUP",
"GOSALESDW"."SLS_PRODUCT_COLOR_LOOKUP" "SLS_PRODUCT_COLOR_LOOKUP",
"GOSALESDW"."SLS_PRODUCT_SIZE_LOOKUP" "SLS_PRODUCT_SIZE_LOOKUP",
"GOSALESDW"."SLS_PRODUCT_BRAND_LOOKUP" "SLS_PRODUCT_BRAND_LOOKUP"

 WHERE "SLS_PRODUCT_LOOKUP"."PRODUCT_LANGUAGE" = N'EN' AND
"SLS_PRODUCT_DIM"."PRODUCT_LINE_CODE" =
"SLS_PRODUCT_LINE_LOOKUP"."PRODUCT_LINE_CODE" AND
"SLS_PRODUCT_DIM"."PRODUCT_NUMBER" =
"SLS_PRODUCT_LOOKUP"."PRODUCT_NUMBER" AND
"SLS_PRODUCT_DIM"."PRODUCT_SIZE_CODE" =
"SLS_PRODUCT_SIZE_LOOKUP"."PRODUCT_SIZE_CODE" AND
"SLS_PRODUCT_DIM"."PRODUCT_TYPE_CODE" =
"SLS_PRODUCT_TYPE_LOOKUP"."PRODUCT_TYPE_CODE" AND
"SLS_PRODUCT_DIM"."PRODUCT_COLOR_CODE" =
"SLS_PRODUCT_COLOR_LOOKUP"."PRODUCT_COLOR_CODE" AND
"SLS_PRODUCT_BRAND_LOOKUP"."PRODUCT_BRAND_CODE" =
"SLS_PRODUCT_DIM"."PRODUCT_BRAND_CODE"

This is a simple query that joins product-related tables and retrieves the required columns.

Working with Macros

190

How to do it...
Now, we will modify the SQL scripts that we just created for this recipe so that in one of them
we will adjust the parameter to be optional and in the second we will make the parameter
optional also, but with a default value:

1. We have created two list reports based on two SQL query subjects. Both the SQL
objects use the same query as mentioned earlier. Now, we will start by altering them.
For that, open Query Explorer. Rename the first query subject Optional_defaultValue
and the second one Pure_Optional:

2. In the Optional_defaultValue SQL object, amend the query with the following lines:
AND "SLS_PRODUCT_LINE_LOOKUP"."PRODUCT_LINE_EN" = #SQ(PROMPT
('PRODUCT LINE','STRING','GOLF EQUIPMENT'))#

3. Similarly, amend the Pure_Optional SQL object query with the following line:
#PROMPT ('PRODUCT LINE','STRING','AND 1=1', ' AND "SLS_PRODUCT_
LINE_LOOKUP"."PRODUCT_LINE_EN" = ')#

4. Now run the report. You will be prompted to enter a product line. Don't enter any
value and just click on the OK button. Notice that the report runs (which means the
prompt is optional). The first list object returns rows for Golf Equipment. The second
list is populated by all the Products.

How it works...
Fundamentally, this report works the same as the one in the previous recipe. We are firing the
SQL statements straight onto the data source. The filter condition in the WHERE clause is using
the Prompt macro.

Chapter 8

191

Optional_defaultValue
In this query, we are using the second and third arguments of the PROMPT() function. The
second argument defines the data type of the value, which is String in our case. The third
argument defines the default value of the prompt. When the user doesn't enter any value
for the prompt, this default value is used. This is what makes the prompt optional. As we
have defined Golf Equipment as the default value, the first list object shows data for
Golf Equipment when the prompt is left unfilled.

Pure_Optional
In this query, we are using the fourth argument of the PROMPT() function. This argument is of
string type. If the user provides any value for the prompt, the prompt value is concatenated to
this string argument and the result is returned.

In our case, the fourth argument is the left part of the filtering condition; that is:

and "SLS_PRODUCT_LINE_LOOKUP"."PRODUCT_LINE_EN" =.

So, if the user enters the value as XYZ, the macro is replaced by the following filter:

and "SLS_PRODUCT_LINE_LOOKUP"."PRODUCT_LINE_EN" = 'XYZ'.

Interestingly, if the user doesn't provide any prompt value, then the fourth argument is simply
ignored. The macro is then replaced by the third argument, which in our case is:

and 1=1.

Therefore, the second list returns all the rows when the user doesn't provide any value for the
prompt. This way, it makes the PRODUCT_LINE_EN filter purely optional.

There's more...
The Prompt macro accepts two more arguments (fifth and sixth). Please check the help
documents or Internet sources to find more information and examples about them.

Adding a token using macros
In this recipe, we will see how to dynamically change the field on which a filter is being applied
to using a macro. We will use the prompt macro to generate one of the possible tokens and
then use it in the query.

Working with Macros

192

Getting ready
Create a list report based on native SQL similar to the previous recipe. We will use the same
query that works on the product tables, but the filtering will be different. For that, define the
SQL as follows:

SELECT DISTINCT "SLS_PRODUCT_LINE_LOOKUP"."PRODUCT_LINE_EN"
"PRODUCT_LINE" , "SLS_PRODUCT_LOOKUP"."PRODUCT_NAME" "PRODUCT_NAME" ,
"SLS_PRODUCT_COLOR_LOOKUP"."PRODUCT_COLOR_EN" "PRODUCT_COLOR" ,
"SLS_PRODUCT_SIZE_LOOKUP"."PRODUCT_SIZE_EN" "PRODUCT_SIZE"

FROM "GOSALESDW"."SLS_PRODUCT_DIM" "SLS_PRODUCT_DIM", "GOSALESDW"."SLS_
PRODUCT_LINE_LOOKUP" "SLS_PRODUCT_LINE_LOOKUP", "GOSALESDW"."SLS_PRODUCT_
TYPE_LOOKUP" "SLS_PRODUCT_TYPE_LOOKUP", "GOSALESDW"."SLS_PRODUCT_
LOOKUP" "SLS_PRODUCT_LOOKUP", "GOSALESDW"."SLS_PRODUCT_COLOR_LOOKUP"
"SLS_PRODUCT_COLOR_LOOKUP", "GOSALESDW"."SLS_PRODUCT_SIZE_LOOKUP"
"SLS_PRODUCT_SIZE_LOOKUP", "GOSALESDW"."SLS_PRODUCT_BRAND_LOOKUP" "SLS_
PRODUCT_BRAND_LOOKUP"

WHERE "SLS_PRODUCT_LOOKUP"."PRODUCT_LANGUAGE" = N'EN' AND
"SLS_PRODUCT_DIM"."PRODUCT_LINE_CODE" =
"SLS_PRODUCT_LINE_LOOKUP"."PRODUCT_LINE_CODE" AND
"SLS_PRODUCT_DIM"."PRODUCT_NUMBER" =
"SLS_PRODUCT_LOOKUP"."PRODUCT_NUMBER" AND
"SLS_PRODUCT_DIM"."PRODUCT_SIZE_CODE" =
"SLS_PRODUCT_SIZE_LOOKUP"."PRODUCT_SIZE_CODE" AND
"SLS_PRODUCT_DIM"."PRODUCT_TYPE_CODE" =
"SLS_PRODUCT_TYPE_LOOKUP"."PRODUCT_TYPE_CODE" AND
"SLS_PRODUCT_DIM"."PRODUCT_COLOR_CODE" =
"SLS_PRODUCT_COLOR_LOOKUP"."PRODUCT_COLOR_CODE" AND
"SLS_PRODUCT_BRAND_LOOKUP"."PRODUCT_BRAND_CODE" =
"SLS_PRODUCT_DIM"."PRODUCT_BRAND_CODE" AND

#PROMPT ('FIELD','TOKEN','"SLS_PRODUCT_LINE_LOOKUP"."PRODUCT_LINE_EN"')#
LIKE #PROMPT ('VALUE','STRING')#

This is the same basic query that joins the product-related tables and fetches the required
columns. The last statement in the WHERE clause uses two prompt macros. We will talk about
it in detail.

How to do it...
We have already created a list report based on an SQL query subject as mentioned previously.
To continue this recipe perform the following steps:

1. Drag the columns from the query subject onto the list over the report page:

Chapter 8

193

2. Now create a new prompt page.

3. Add a value prompt on the prompt page. Define two static choices for this:

Display value Use value
Filter on product line "SLS_PRODUCT_LINE_LOOKUP"."PRODUCT_

LINE_EN"

Filter on product name "SLS_PRODUCT_LOOKUP"."PRODUCT_NAME"

4. Set the parameter or this prompt to Field. This will come pre-populated as an existing
parameter as it is defined in the query subject.

5. Choose the UI as radio button group and assign Filter on Product Line as the
default selection.

Working with Macros

194

6. Now add a textbox prompt on to the prompt page.

7. Set its parameter to Value; this comes as a choice in an existing parameter (as it is
already defined in the query).

8. Run the report to test it. You will see an option to filter on product line or product
name. The value you provide in the textbox prompt will be used to filter either of
the fields depending on the choice selected using the radio buttons:

How it works...
The data type (second argument) of the PROMPT() function determines how the value is
returned. For STRING type, the value is returned within a single quote. However, there is a
data type called TOKEN. When you use this, the function accepts a STRING value and puts it
literally within the expression, that is, without quotes.

Here, we have used this functionality to dynamically change the field on which the filter is
applied. The two possible tokens are defined in the USE VALUE section of the radio button.
Depending on the user's choice, one of the tokens will be placed in the query and will form the
left part of the filter expression.

The right part of the filter is a standard string parameter. Whatever value the user types in the
textbox prompt will be wrapped in single quotes and then placed in the SQL statement.

Effectively, the resulting expression will be something as follows:

"SLS_PRODUCT_LINE_LOOKUP"."PRODUCT_LINE_EN" = 'XYZ'

Using the prompt() and promptmany()
macros in query subjects

This recipe will show you that macros can be used with standard query subjects as well.

Getting ready
Create a simple list report based on the GO Sales Data Warehouse (Query) package. Insert
Product line, Product, Product color, and Product size as the columns.

Chapter 8

195

How to do it...
In this recipe you will see how to use macros as filters in Query Explorer as follows:

1. Go to Query Explorer and open the query used by list.

2. Add a detail filter with the following definition:
[Product line] = #prompt('ProductLine')#

3. Add another detail filter as follows:
[Product] in #promptmany('Product')#

4. Run the report to test it. You will see two mandatory prompts. The one for the Product
line will let you enter one value, whereas the other one will be on product and it will
allow you to enter multiple values.

How it works...
This is the same Prompt macro which we used in prior recipes with native SQLs. As you can
see, macros can be used in standard query subjects. You can utilize them in filters, a data
items, or slicers.

The strength of this feature is seen when you use the other macros like
CSVIdentityNameList, TimeStampMask, and so on in data item and slicer.

Showing the prompt values in a report
based on security

This recipe combines the techniques learned in prior recipes to achieve a business
requirement. Let's say that a report shows sales data by country and product line.
Users can choose to see data for one or more countries.

However, we need to implement a security mechanism so that a user can choose only
those countries to which they are supposed to have access. This is determined by the
user group he/she belongs to.

Getting ready
Create a simple list report with Country, City, Product line, and sales Quantity as columns.

Working with Macros

196

How to do it...
In this recipe, we will start by adding a filter for countries as follows:

1. Go to Query Explorer and insert a new detail filter and ensure that this filter is
mandatory. Define it as:
[Country] in ?Countries?

2. Now add a new prompt page. Drag a value prompt onto it.

3. Follow the prompt wizard to set the following:

1. Link it to an existing parameter called Countries.

2. Create a new query for this prompt and call it Countries.

4. Go to Query Explorer and open the Countries query subject.

5. Add a detail filter and define it as:
 [Country] in (#CSVIdentityNameList(',')#)

6. Run the report to test it. You will see that you can see only those countries in the
value prompt to which the user is supposed to have access. For my account, I can
see only 'Spain', as I have set the membership accordingly.

Chapter 8

197

How it works...
This recipe simply combines the techniques we learnt in prior recipes. We use the
CSVIdentityNameList() macro to retrieve the user group information.

We use this macro in the prompt query in order to restrict the values coming through in
the value prompt. Whatever values are selected by users are then passed as a standard
parameter for filtering to the report query.

String operations to get it right
We have seen one example of performing string manipulation in a macro to swap the columns
of a slicer in Chapter 7, Working with Dimensional Models. In this recipe, I will show you more
macro functions to manipulate the values and how to achieve the required functionality
using them.

Let's say that a report is required to show sales by Date and Product line. This report should
show data only for the current month (full month).

Getting ready
Create a simple list report with Date, Product line, and Quantity as columns:

How to do it...
In this recipe, we will see how to use some useful macro functions like current_timestamp,
as follows:

1. Open Query Explorer. Go to the query used by the list object.

2. Add a new detail filter and define it as:
[Date] between #timestampMask (_first_of_month(
 $current_timestamp),'yyyy-mm-dd')# and #timestampMask(
 _last_of_month($current_timestamp),'yyyy-mm-dd')#

3. Run the report to test it. Unfortunately, the GO Sales database doesn't hold data for
the year 2010. However, if you insert rows for the current month in the database, you
will see that they are retrieved by the report.

Working with Macros

198

How it works...
Here I am introducing you to four new elements usable in macros. The first one is a session
parameter called current_timestamp. Session parameters are accessed in macros by
putting a dollar sign ($) before them. $current_timestamp returns the current date and
time on the Cognos server.

Then, we use functions called _first_of_month() and _last_of_month(). These
functions accept the date-time value and return the corresponding first and last days of the
month. For example, if today's date is 21st Jan 2010, then #_first_of_month($current_
timestamp)# will return 1st Jan 2010.

Finally, we use the timestampMask() function to mask the time part and return the date
in the required format. This function takes several format strings as a second argument, and
we are passing yyyy-mm-dd for that. This way, we are using macros to determine the date
range for the current full month. We use them to filter the data in our detail filter. You can use
this concept to build up your own logic using different macro functions to achieve required
functionalities that are not available as standard in Cognos Report Studio.

There's more...
I would highly recommend checking out the other macro functions using the
Framework Manager.

Chapter 8

199

The Framework Manager gives you a ready list of available functions, their descriptions, and
a place to quickly try and test them. If you are using Version 10, you can see this list of macro
functions and syntax in the data editor, but you cannot quickly test a macro like you can do in
the Framework Manager.

Showing a username in the footer
Let's examine two more session parameters which are very useful in real-life reports. Reports
are often printed and handed over to other members/teams to have a look at. For a person
who is looking at a printed report, the most important thing is to know the time when the
report was run. That is why we usually put the timestamp in the report footer.

However, it is also useful to record who ran the report. This helps us to go back to the person
in case of any queries. This recipe shows you how to display the user's name and the machine
on which the report was run in the footer.

Getting ready
Pick up any of the existing reports.

How to do it...
In this recipe we will use a macro to show the user's username in the report footer, as follows:

1. Go to Query Explorer and create a new query subject called User.

2. In that query subject, add a new data item. Call it Machine and define it as:
#sq($machine)#

3. Then, add another data item and call it User. Define it as:
#sq($account.defaultName)#

4. Now go to the report page. Select anything on the page. Using the Ancestor button,
select the whole Page object.

Working with Macros

200

5. For this, amend the Query property and link the page to the User query subject:

6. Now, drag the User and Machine data items from the Data Items pane in Insertable
objects onto the report footer.

7. Run the report to test it:

How it works...
Here, we are using two session parameters, namely $account.defaultName and
$machine. They are accessible from within a macro but that macro needs to be written within
a query subject. Therefore, we create a new query subject to define these two items. Then, we
link the page with it and drag the items onto the report footer.

Chapter 8

201

There's more...
If the user directory is properly set up, you might be able to access more user information,
such as e-mail ID, given names, and surname.

Please take your time to examine the other session parameters using the
Framework Manager.

9
Using Report Studio

Efficiently

In this chapter, we will cover the following topics:

 f Using Report Studio's environmental options

 f Copying and pasting partial or full reports

 f Upgrading report specifications

 f Setting the execution timeout

 f Setting the maximum row limit

 f Handling slow report validation

 f Capturing a query

 f Browsing values from the data expression window

 f Viewing the page structure

 f Picking up and applying styles

 f Using the "grab them all" practice

 f Using Default Data Formats

Introduction
A common issue when learning any rich tool is that we tend to miss out on some options or
features that are not frequently used. We do routine development work without even knowing
that there are some features that can improve our experience as a developer (report writer) or
improve the deliverables.

Using Report Studio Efficiently

204

This chapter will show you different customizable options and utilities within IBM Cognos
Report Studio that can make a report builder's life easier. They will save you time and effort
and some will reduce the number of defects as well.

Though I have made some recommendations throughout these recipes depending on my
personal preference, I suggest that you try these options yourself and then decide. Please
refer to the IBM Cognos manual for detailed information about each option and utility.

Using Report Studio's environmental options
In this recipe, you will learn about some environmental options that you can set in Report
Studio to aid development.

Getting ready
Create a simple list report with Product line and Product as columns from the Products
query subject.

How to do it...
In this recipe, we will examine some features in Report Studio that can be very helpful while
creating your reports:

1. Select the Product column. Using the Ancestor button in the Properties pane, select
the List Column object as shown in the following screenshot:

Chapter 9

205

2. From the Properties pane, change the Box Type property to None:

3. You will notice that you cannot see the Product column on the report page anymore.
Now, assume that you want to change the Box Type property back to default. It is
difficult to do it as you cannot select the column now.

4. From the menu, select View | Visual Aids | Show Hidden Objects. You will notice
that the Product column becomes visible.

Using Report Studio Efficiently

206

You can now select this column and change its properties as required.

Similarly, you can experiment with other options in Visual Aids.

Now we will see a crosstab-related feature:

1. Create a new page in the report and drag a crosstab with Product and Product color
nested on rows, as shown in the following screenshot:

2. Now try to drag Product size beneath Product. You will see that it will create a new
node without nesting Product color in it:

Chapter 9

207

3. Now undo the last operation, and from the menu, select Structure | Create Crosstab
Nodes. Uncheck this option.

4. Try to drag Product size again beneath Product. You will notice that you can now
insert it without creating a new crosstab node. It can be a peer of Product with
Product color already nested in it, as shown in the following screenshot:

We will discuss its usage in the How it works… section.

Using Report Studio Efficiently

208

Now let us examine some options from the Options menu under Tools:

1. This dialog box has four tabs. The first tab is related to the look and feel of Report
Studio. One important setting here is Reuse IBM Cognos Viewer window, shown in
the following screenshot:

2. Toggle this option and run the report multiple times. You will notice that when this
option is turned off, Report Studio creates a new window for every execution of
the report.

3. Take your time to examine the options from other tabs as well. The Report tab has
some useful options, which are discussed in the How it works… section.

How it works...
Now let us talk in detail about the options we visited in this recipe.

View | Visual Aids
As the name suggests, these are some visual aids to help the report writer during the
development of a report.

Chapter 9

209

We experimented with the option that toggled the visibility of hidden objects. Once an object
is hidden, if it is not visible on the report page, the only way to manipulate it is to go to Page
Structure. We will talk about this in another recipe in this chapter. However, I personally
prefer Show Hidden Objects as it is very handy to select them from the report page and
manipulate them.

Show Repeating is particularly useful when you have multiple levels of nesting and different
group spans.

You should take your time to experiment with these options to decide on the ones you would
like to keep.

Structure | Create Crosstab Nodes
As we have already seen, when this option is on and a new item is added to a crosstab, it
is created as a crosstab node. When this option is off, the new item is added to the existing
node and retains the existing nesting.

It is advisable to turn this option off. This will allow you to create discontinuous crosstabs.
Also, you can manually add the same nesting as peer nodes anyway if you need to do so.

Tools | Options | View | Reuse IBM Cognos Viewer window
I prefer to turn this option off during development. By doing so, I can compare the report
output with that of the previous execution and see the effect of whatever changes I
performed. However, you might end up having loads of report viewer windows. So, you should
remember to close the ones that are not needed. Again, it is your personal choice to keep or
reject this option.

Tools | Options | Report
Let us examine some useful options from this tab:

Option Description

Alias member unique
names

This is useful when working with dimensional models. If turned on,
Report Studio creates a separate data item (alias) for any member
dragged into an expression.

I prefer to keep this option off, as it unnecessarily increases the
number of data items in a query subject.

Delete unreferenced
query objects

When on, Report Studio automatically deletes the query objects
linked to another object that is deleted. For example, if you delete a
list, the query subject linked to the list is deleted as well. I like this one
as it helps with housekeeping.

If you want to remove an object from one place but still keep it in
other places, you can "cut" it instead of "deleting" it.

Using Report Studio Efficiently

210

Option Description

Delete unreferenced
conditional styles

This automatically deletes conditional styles when the last data item
that refers to the conditional style is deleted.

Aggregation mode This is a very useful option when working with a dimensional data
source. It specifies the aggregation type to use when aggregating
values in crosstabs and charts.

 f Within detail aggregates the lowest level of visible details.

 f Within aggregate aggregates the visible aggregates at the
next lower level of detail.

 f Within set aggregates the member sets. It considers members
within the current content and is faster than Within detail.

Within set can not only affect the result of the aggregation, but also
the performance of report. This option has been taken off in Version
10.2.

Always Create
Extended Data Items
for new reports

I like to turn this option off. When turned off, any member dragged
from Source to Report is created as an expression-based data item
that can be modified by changing the expression.

If this option is turned on, the items are "Extended Data Items" with
extended properties but cannot be manually updated.

Limit on inserted
individual members

This option works with a dimension source when you choose to insert
children while dragging a member onto the data container. Instead
of inserting all children, this allows us to specify how many children
should be added, and the remaining children are grouped into
OTHER.

There's more...
You should refer to the Cognos documentation to learn more about these options and then
experiment with them to decide which are best for you.

Copying and pasting partial or full reports
Perhaps this is not something that is going to impress you. However, I was really impressed
when I saw this feature. We will see how to copy part of a report and a full report and paste it
into another instance.

We often need to copy part of a report or the full report from one Report Studio environment
or instance, to another. This might be for re-use purposes or for promoting it to the next stage.

Chapter 9

211

Getting ready
We will use the report created in the previous recipe for this one.

How to do it...
In this recipe we will see how to copy part of a report—in our case, a query and its list
table—from one report to another report. We will also see how to copy the whole report
to a new report. To do this, perform the following steps:

1. Open the report in Report Studio. We will call it the Source instance.

2. Now open another instance of Report Studio from the same connection portal for the
same package, GO Data Warehouse (query). We will call this instance Destination.

3. Now go to Query Explorer in both the instances.

4. Right click on Query1 from the Source instance and choose Copy:

5. In the Query Explorer pane of the Destination instance, right-click and choose Paste.

You will see that the query subject is successfully copied. You can open it and check
the data items. They carry all the properties properly.

6. Now go to Report Page in the Source instance. Select the list object. This time hit
Ctrl + C on the keyboard to copy it.

Using Report Studio Efficiently

212

7. Switch to the Destination instance. Go to Report Page. Select the page body and hit
Ctrl + V to paste the list object. Change the Query property of this list to Query1 as
shown in the following screenshot:

8. Run the report to test it. You will see that the list report is produced correctly.

9. Finally, we will see how to copy the whole report. For that, go back to the
Source instance.

10. From the menu, choose Tools | Copy Report to Clipboard.

Chapter 9

213

11. In the Destination instance, from the menu, choose Tools | Open Report
from Clipboard.

12. You will see that the whole report has been copied to the Destination instance.
Here, it is a new report that you can validate and save at an appropriate location.

How it works...
When a part of the report is selected and copied (right-clicking and then selecting Copy or Ctrl
+ C), its XML specification is copied on the clipboard. You can paste it in any XML or text editor
and examine it. In the Destination instance, you can paste this XML specification and Report
Studio properly parses it to create the objects.

When the copied object has some dependency, for example, a list that is dependent on the
query subject, then the dependency object should be copied first. That is why we first copied
the query subject and then the list.

This feature is useful as it allows for the quick re-use of objects and saves
time. Please note that this feature works only with IE up to Cognos 10.1.1.
I have tested it on Firefox but it doesn't seem to work.

The Copy Report to Clipboard and Open Report from Clipboard options are particularly
useful when copying reports across environments or servers. This comes in handy when
the packages are promoted to the destination environment, and hence this saves the
export-import hassles.

Upgrading report specifications
This recipe will examine whether we can use the copy and paste feature of Report Studio to
promote a report from an older version to a newer version.

Getting ready
You might not be able to experiment with this. I will perform this recipe using two Cognos
environments: 8.4 and 10.1.1. Both the environments are configured and have the GO Data
Warehouse (query) package published.

Using Report Studio Efficiently

214

How to do it...
In this recipe you will see how report specifications are upgraded when copying the report to a
higher version of Cognos:

1. Open any report in Report Studio Version 8.4.

2. From the menu, choose Tools | Copy Report to Clipboard.

3. Open the Report Studio instance from a higher version of Cognos. I will open one
from 10.1.1. Choose the GO Data Warehouse (query) package.

4. In this new instance, select Tools | Open Report from Clipboard from the menu.

You will see the following dialog box:

5. Run the report to test it. In most cases, the report will run fine.

How it works...
The newer versions of Cognos Report Studio are made backwards compatible when it comes
to the XML specification of the report. That means we can copy the specification from an
older version and paste it into a newer one. It will automatically detect the difference and will
upgrade the specification accordingly.

Setting the execution timeout
Some reports are capable of firing quite resource-consuming queries on the data source. This
can cause a bottleneck on the database and hence a problem for other users and jobs. This
recipe will show you how to automatically get the report query killed if it takes longer than a
certain time limit.

Getting ready
Create a simple list report based on the GO Data Warehouse (query) package. Pull Product
line, Product type, and Product as columns.

Chapter 9

215

How to do it...
In this recipe we will learn how to set the execution timeout for a query. To do this, perform the
following steps:

1. Open the report in Cognos Report Studio.

2. Go to Query Explorer and select Query1.

3. From the Properties pane, open the Maximum Execution Time property.

4. Set it to a low number. For testing, we will set it to 1, as shown in the
following screenshot:

That means we are setting the maximum execution time for the query to one second.

5. Run the report to test it. In most cases, this will cross the threshold of one second
and you will receive an error message such as the one shown as follows:

6. Now go back to Cognos Report Studio and increase the Maximum Execution Time
value for the query to 30 sec and run the report. It will run fine.

Using Report Studio Efficiently

216

How it works...
In this recipe, we experimented with the Maximum Execution Time property of the query.
As you can see, this property allows us to terminate the report execution automatically if the
query is taking a long time.

It is a useful property for reports where users can accidentally or purposely put some highly
resource-consuming selection parameters. For example, if a report is supposed to be run
for a small date range, some users might mistakenly run it for months or years, therefore
hammering the database. This can take up a lot of database time and might also affect
other jobs running on the server.

By putting a time limit on it, we can ensure that the report is automatically terminated if it is
going on for a certain length of time.

However, this time limit is not for the total time taken by the query on the database. It is for
the time lapsed from query submission to the first result returned back. In an HTML output,
often a page full of data is returned quickly, and hence the report might not show an error.
However, when the same report is run in PDF or Excel, it might reach the threshold and
result in an error.

Also, there is no easy way to customize the error message. As you can see, it is an ugly
message, but we have to live with it.

There's more...
The maximum time limit can also be set at the package level in Framework Manager using the
governors. Please refer to the Framework Manager documentation for the same.

The administrator can also define an environment-wide query execution time limit from
the connection portal by configuring the report service. For that, please refer to the
Administration and Security Guide.

Setting the maximum row limit
This is similar to the previous recipe. Instead of setting any limit for query execution time,
here we will set a restriction on the number of rows returned by the query.

Getting ready
We will use the report created in the previous recipe for this recipe.

Chapter 9

217

How to do it...
In this recipe we will learn how to set the maximum row limit for a query. To do this, perform
the following steps:

1. Open the report in Report Studio.

2. Go to Query Explorer and select the report query.

3. From the Properties pane, open the Maximum Rows Retrieved property.

4. For testing purposes, set it to 50 as shown in the following screenshot:

5. Run the report in HTML format.

6. Browse the report page by page. As soon as you hit the record count of 50 (usually on
the third page), you will receive an error message saying that the query has reached
the maximum row limit.

7. Go back to Cognos Report Studio and change the limit to the required row limit; for
example, 2000.

Using Report Studio Efficiently

218

How it works...
This option serves the same requirement as the last recipe. When you want to ensure that the
data source is not burdened by heavy queries, you should set such limits.

The maximum row limit can also be set at the package level from Framework Manager.

Handling slow report validation
Sometimes when you try to validate a report in Cognos Report Studio, it takes a long time.
You will see the validating alert and then a blank dialog box appears and the Studio will
seem to have frozen.

This recipe will show you how to fix this problem.

Getting ready
Create a simple report with all the columns from GO Data Warehouse (Query)/ / Sales/ /
Products as query subjects.

How to do it...
In this recipe you will learn a small trick that can help you to avoid slow report validation.
To do this, perform the following steps:

1. We will start by replicating the scenario that I am talking about. For that, open
Query Explorer.

2. Open the query associated with the list object. It is called Query1 in the sample.

3. Add a detail filter with the following definition:
[Product line code] in ?PL?
and [Product type] in ?Type?
and [Product] in ?Name?
and [Product color] in ?Color?
and [Product size] in ?Size?
and [Product brand] in ?Brand?

Chapter 9

219

4. Go back to the report page. Now click on the Validate button from the toolbar.

Notice that you first get the validating alert. Then, a new dialog box appears, which is
blank for a while.

5. Finally, all the prompts are loaded in that dialog box. You need to select each of them
as all are mandatory. After making the selection, the report validates.

6. Now go back to Query Subject. Disable the detail filter.

7. Try validating the report now. You will see that validation is very quick now. You are
not prompted for any selection and also the time to bring the prompts up is saved.

Using Report Studio Efficiently

220

How it works...
When we validate any report in Cognos Report Studio, it asks us to enter the values for all the
mandatory filters. This is a good thing as it forms the query with more completeness before
validating. However, the prompt query and type of prompt are not controlled, which can often
result in a long time interval to generate the prompt. This is annoying for the report writer as
he/she only wants to do a sanity check on the report code.

By disabling the filter, we exclude it from the validation process. Report Studio still validates
everything else, that is, data items, slicers, calculations, other query subjects, and so on.

This way we can stop Cognos Report Studio from freezing or taking a long time to validate the
report and still have peace of mind that most of the report is validated. After the validation
is done, you should enable the filter again and then do test runs to ensure that the filters are
working fine. You would do that anyway for unit testing.

There's more...
You can specify certain options related to report validation from the menu. Select Tools |
Validation Options. Here you can decide what level of information you would like to receive
during the validation process. By default, it is set to Warning.

I recommend setting it to the most detailed, that is, the Information level. This can provide
some interesting and useful information about key transformations and query planning.

You can also decide whether you would like the query optimization to happen or not using
the Interactive Data option. When this is selected, the optimization is done and the plan is
created to retrieve the top rows depending on the Execution Optimization property of the
query subject. By default, this option is unchecked. That means the query is planned for
retrieval of all rows. I recommend keeping it as the default, that is, unchecked.

Capturing a query
Report Studio is a tool for a wide audience—right from business users, management
personnel, and analysts, to the pure technical report writers. If you are a technical person who
understands the SQL/MDX being fired on the database, you certainly want to examine one to
optimize the report performance and sometimes to merely ensure that everything is fine.

This recipe will look at the right ways to capture the query fired on a data source.

Chapter 9

221

Getting ready
We will use the list report created in the previous recipe for this recipe.

How to do it...
In this recipe we will learn how to extract the SQL/MDX query generated for a report. To do
this, perform the following steps:

1. Open the report in IBM Cognos Report Studio.

2. Go to Query Explorer and set the Usage option of the filter item to Optional.

3. From the menu, select Tools | Show Generated SQL/MDX, as shown in the
following screenshot:

A new dialog box will appear with the SQL statements for each query subject (only
Query1 in this example).

Using Report Studio Efficiently

222

4. Choose Native SQL from the drop-down list. Now, examine the SQL statement:

You will notice that there are no filters in the WHERE condition.

5. Now, close this dialog box. Change the Usage option of the filter to Required.

6. Again, choose Tools | Show Generated SQL/MDX from the menu. You will be asked
to enter prompt values. Enter some and click on OK.

7. Check Native SQL. This time you will see that filters are included in the WHERE clause:

Chapter 9

223

This is a query with more completeness, which gives a better idea of what statement
will be executed on the database when users run the report.

How it works...
The Show Generated SQL/MDX option gives you two types of queries: Cognos SQL and
Native SQL. Cognos SQL is a generic and more readable form that also uses some Cognos
functions. However, it is not an exact query that is fired on the database. For that, we need
to refer to Native SQL.

There's more…
The following are a few more important aspects of the recipe explained.

Why make filters mandatory?
In the previous recipe, I recommended that you disable the filters before validating. That was
to exclude the query and speed up the validation. However, we have a different requirement
here. Our report writing is almost done, and all data items, calculations, filters, slicers, and so
on are defined. We now want to examine the actual query that will be fired on the database,
to examine the correctness of joins and filtering, and to check any optimization possibilities.

For that purpose, we need the completeness of a query. Therefore, I am now asking you to
change all the filters to Required. That way, we force Cognos Report Studio to prompt you
for the values and then include all the filters in the query.

Query formatting
The native query in the dialog box is not formatted, and hence it is very difficult to read.
I recommend using some query formatting tools for that.

Many database clients and utilities such as TOAD can be used to format SQL statements.
You can also use online tools such as http://www.dpriver.com/pp/sqlformat.htm.

If you are writing a report against the dimensional source, the query will be of MDX
type. Visit http://formatmdx.msftlabs.com/ for information that can be useful
for formatting it.

Capturing the query for the database
It is recommended that you use the tracing utilities to directly trap the query from the server.
That way, you can examine the timing and behavior. When you run the report in the HTML
format, Cognos might be asking for just a set of data. When you use Sections in the report,
there will be multiple queries fired on the database for a loop of values. All this can be studied
only by directly examining the activities on the database server. The Session Browser tab in
TOAD and Profiler for SQL Server are classic examples of such utilities.

Using Report Studio Efficiently

224

Browsing values from the data expression
window

This recipe will show you a small feature of Cognos Report Studio that comes in handy and is
often overlooked.

Getting ready
We will use the report used in the previous recipes for this recipe.

How to do it...
In this recipe we will see how we can browse the values in the data expression window to
select a specific value to be used. To do this, perform the following steps:

1. Open the report in Report Studio.

2. Let's say we want this report to show only certain product lines (hardcoding).
For that, we would want to add a Product line filter. So, add a new detail filter.

3. Now we are in the filter expression dialog. Enter the following expression:
[Product Line] in

This is shown in the following screenshot:

Chapter 9

225

4. As this filter will do literal string comparisons, we need to enter the exact values of the
required product lines. Select the Product line data item from the data items' pane.
Click on the Select Multiple Values button in the upper-right corner of the page
(located beside the cut icon).

This will open a new dialog box.

5. Select Camping Equipment and Golf Equipment. Click on the green arrow to add
them to the list on the right. Finally, close this dialog by clicking on the Insert button.

6. You will see that the selected values are automatically populated in the filter
expression, and the expression now reads like this:
[Product line] in ('Camping Equipment', 'Mountaineering
Equipment')

7. Close the dialog box and run the report to test it.

How it works...
We often need to hardcode some data values in reports. This may be to restrict the data
set or to perform some conditional logic or some other requirements. In order to define the
values correctly, we need to browse the data and make sure that we write them correctly in
the expression.

Using Report Studio Efficiently

226

Instead of opening a database client to browse these values, this utility in Cognos Report
Studio comes in handy. Sometimes, the report authors don't even have the database clients
installed and configured on their machine.

You will see these two buttons in Cognos Report Studio when you are in the data item
expression or filter expression dialog box:

Both will let you browse the values of the selected data item or query item. However, the first
one will allow you to select only one value to be inserted in the expression, whereas the other
one will allow you to select multiple values and will add them to the expression as comma-
delimited and within brackets.

There's more...
You can also test the data of the whole query subject (all query items with the filters and
slicers applied on the results) by opening the query subject in Query Explorer and choosing
Run | View Tabular Data from the menu, as shown in the following screenshot:

Please try this option to see how it works.

Viewing the page structure
This recipe will show you another view/option available in Cognos Report Studio to examine
and edit the reports.

Getting ready
We will use the same report used in the previous recipe for this recipe.

Chapter 9

227

How to do it...
In this recipe we will see how to view/use Page Structure. To do this, perform the
following steps:

1. Open the report in Report Studio and go to the report page.

2. From the menu, choose View | Page Structure as shown in the following screenshot:

3. You will see that the report page transforms into a tree-type list object, as shown in
the following screenshot:

4. Open the different nodes and examine the objects.

Using Report Studio Efficiently

228

How it works...
As you know, the report definitions in Cognos Report Studio are nothing but XML files.
The report objects, Page, List, Columns, and so on, are all stored internally as nested tags.

By switching to the Page Structure view, you can actually see how the objects are contained
within each other and how they are inter-related. You can select any object (for example,
List Columns Body Style) and manipulate its properties. You can also delete them, copy the
objects and paste them in another place, and move them around within the rules governed by
Cognos Report Studio.

This is a great way to examine and manipulate some report objects that are not directly visible
in the normal view. We had mentioned in the Using Report Studio's environmental options
recipe that when you hide some objects on the report page, and if the hidden items are not
made visible by changing the environment options, then the only way to select and manipulate
them is to do it from the Page Structure view.

I would recommend that you familiarize yourself with this view. Do some browsing, copying/
deleting of objects, and try changing properties of some objects. Later, you can go back to the
normal view by selecting View | Page Design from the menu.

Picking up and applying styles
In this recipe, we will see a very useful utility within Cognos Report Studio that you can use to
deal with styles in your reports.

Getting ready
We will use the same list report that we used in the previous recipe for this recipe.

How to do it...
In this recipe we will see how to pick up a specific style that is applied on a specific column
and then apply it on other columns in the report:

1. We will apply certain formatting to the list columns. Start by applying the following to
the Product line column:

 � Font: 12 pt.

 � Background Color: #FFFF99.

 � Border: 1pt solid lines on left and right. None for Top and Bottom.

Chapter 9

229

2. Select the Product line column. Click on the Pick-Up Style button from the toolbar.

3. Now select the Product type and Product columns from the list (by holding
the Ctrl key).

4. Click on the Apply Style button.

You will see that all the formatting, font, background color, and borders are applied to
the selected columns:

5. Now again select the Product line column.

6. This time, click on the little drop-down arrow beside the Pick-Up Style button. Choose
the Edit Dropper Style… option as shown in the following screenshot:

7. This will open up a dialog box with the style already filled in. We don't want to copy
the color for the rest of the columns. We need only font and borders. So, change the
background color to Default.

8. Click on the OK button to close the dialog.

Using Report Studio Efficiently

230

9. Now choose the rest of the columns from the list (the ones that are not formatted).
Click on the Apply Style button. Notice that the fonts and borders are applied to
these columns and the background color remains as default:

10. Run the report to test it.

How it works...
Pick-Up Style and Apply Style are buttons added to Cognos Report Studio from Version 8.3
onwards. They work in conjunction and are extremely useful to the report writer.

As you have seen in this recipe, it allows the writer to pick up or copy the styling of an object
and then apply it to one or more objects in the report. You can choose to apply all the styles
(colors, fonts, border, alignments, padding, formatting, data format, images, and so on) or just
apply the selected ones.

From experience, it is seen that a lot of time is spent formatting reports that have a large
number of columns, rows, aggregations, and so on. Also, this is the area causing cosmetic
defects in the reports. Using this utility, we can save quite some time and prevent defects too.

Using the "grab them all" practice
This recipe will tell you about something that is good practice. I have put it under this chapter
for two reasons. One: it builds upon the idea learned in the previous recipe. Two: it does help
you use Report Studio better.

The previous recipe showed you how to apply styles to selected list columns. Here we will
see the recommended way to apply the same style to all the objects (List Column Titles in
this case).

Getting ready
We will continue working on the report that we modified in the previous recipe.

Chapter 9

231

How to do it...
In this recipe we will show you how to apply the same style on multiple objects.

1. Say we want to apply the following style to all the list column titles:

 � Font: 12 Pt

 � Background Color: Silver

 � Border: 1pt Solid all sides

2. We have two options. First apply this style to one column title, say, Product line,
as shown in the following screenshot:

3. Now, use the Pick-Up Style and Apply Style buttons to all the column titles as learned
in the previous recipe.

4. Run the report to test it and you will see that it works:

Using Report Studio Efficiently

232

5. However, if you drag a few more columns on the list, you will see that the formatting
needs to be re-done on them.

6. To avoid this problem, let's learn another technique. Remember that we want to apply
the same formatting to all column titles. So, undo all the changes we have made
to the report in this recipe. Bring it back to the original state as we left it in the
previous recipe.

7. Now select any one list column title.

8. Using the Ancestor button in the Properties pane, choose List Column Title Style.
You will notice that all column titles are selected.

9. Now apply the required formatting (color, border, and font in this example):

10. Run the report to test it.

Chapter 9

233

11. Add some new columns to the list. Notice that the column titles already have
consistent formatting.

How it works...
What we are doing here is instead of selecting the column titles individually, we are making
a general selection of List Column Title Style that applies to all column titles. In fact, it is a
parent object, so even the new items added later on to the list will fall under it and will carry
the same formatting.

This practice of selecting a generic or parent-level object not only saves time but also makes
the formatting more future-proof. A report writer should follow this "grab it all" practice
whenever formatting.

See also
Please don't miss the Customizing classes for report-wide effect recipe in Chapter 13, Best
Practices, as it will further enhance the technique of applying a universal style to the report.

Using Default Data Formats
This recipe will show you how to specify default data formats to save time during development.
This option is available in v10.2.

Getting ready
Create a new crosstab report.

Using Report Studio Efficiently

234

How to do it...
In this recipe we will see how to define a default data format to be used within the report. To
do this, perform the following steps:

1. From the Data menu, open Default Data Formats… as shown in the
following screenshot:

2. Select the Number format and update the properties as you would like to commonly
use throughout the report.

Chapter 9

235

3. Go ahead with report creation as normal. For any numeric column or fact cells,
select the data format as Number but don't specify any properties.

4. Run the report to test it. See that the item with the Number data format follows
Default Number Style, that is, two decimal places, negative brackets, and the
thousands separator.

How it works...
By defining the detailed properties (decimals, separator, negative sign, error characters, and
so on) for each required data format (Number, Date, Time, Currency, Percent, and so on)
under Data | Default Data Formats, Report Studio allows us to save time in development
as well as maintain consistency in the report.

We can always override the properties for any individual item if required.

Working with
Active Reports

In this chapter, we will cover the following topics:

 f Building tabbed reports

 f Working with Decks

 f Working with the Data Deck

 f Filtering data using Data Check Box Group

Introduction
In this chapter, we will cover Active Reports. IBM Cognos Active Report is a new report output
type that was introduced in IBM Cognos Business Intelligence 10.1. Active Reports allow
professional report authors to create highly interactive and easy-to-use reports. These report
outputs work as self-contained applications that allow users to go through the interactive
contents even when they are offline. It is a great option for mobile workers who are often
not connected to the network.

Active Reports make business intelligence easier for users on the go. Report authors build
reports targeted at their users' needs, keeping the user experience simple and allowing them
to explore their data and derive additional insight to their own convenience without being
online and connected to the network.

IBM Cognos Active Report outputs are self-contained so all the data that is returned by the
queries is included in the reports. As the amount of data increases, the output file MHT
(Microsoft Hypertext Archive) file size increases.

Working with Active Reports

238

Building tabbed reports
In this recipe, we will create our first Active Report. We will examine the Active Report's Tab
control and see how to use it to create a multi-tab reports. Before Active Reports, these kind
of reports could be done only by embedding a long HTML code in the report.

Getting ready
For this recipe, we will use the GO Data Warehouse (query) package. We will create a report
with two tabs. In the first tab we will have a Crosstab report, while in the second tab we will
have a Chart report.

Open the IBM Cognos Report Studio and select the GO Data Warehouse (query) package.

Select the Active Report template and click on OK. This will open a new Active Report that we
will use through this recipe.

How to do it...
In this recipe, we will see how to use Tab control to build multi-tab reports. To do this, perform
the following steps:

1. From the Toolbox items, drag the Tab Control object onto the report.

Chapter 10

239

2. Click on the Tab Control object. In the Properties pane, rename the control to
Crosstab / Chart Tab Control.

3. Click on the Tabs Definition button within the Tab Control object.

If you don't see buttons, you will have to go to View | Visual Aid |
Show Interactive Object Controls. After enabling, you will be able
to see these buttons for Tab control:

4. In the pop-up window that will appear, delete Tab Label 3 by clicking on the X icon
that will appear when you hover over Tab Label 3.

Working with Active Reports

240

5. Rename Tab Label 1 to Crosstab and Tab Label 2 to Chart.

6. Click on OK to return to the report page. Now you can notice that the changes
we have made are applied now to the Tab control.

7. Now from Toolbox, drag Crosstab onto the Crosstab tab.

8. From the Source pane, drag Product line onto the rows of the crosstab. Drag
Year into the columns of the crosstab. Add Revenue as the crosstab measure.

9. Now click on the Chart tab. Drag a chart from Toolbox and select Line Chart as the
chart type and then click on OK.

10. From the Source pane, drag Product line onto the Series: of the chart. Drag Year
onto Categories: of the chart. Add Revenue as the chart measure.

Chapter 10

241

11. Now run the report to test it.

12. Finally, choose Download Active Report from Report Studio by selecting the option
from the Run button as shown in the following screenshot:

This will download an MHT file that you can open anywhere (without being connected
to the Cognos server or network) and it will show the same report with both tabs
and data.

How it works...
Tab Control in Active Reports allows the report author to develop multi-tabbed reports. You
use Tab Definition to define as many tabs as you want in your report. You can also edit the
tab names as you wish or delete any of them if you don't need it any more in your report.

Once you add Tab Control, you can open each tab and work on it as if it's a separate report.
You can add items such as lists, crosstabs, and charts.

Working with Active Reports

242

There's more...
Another control to check out is the Data Tab control. A Data Tab control provides the report
author with the ability to create tabs based on a number of records returned by a data item.
A Data Tab control is used when you want to achieve dynamically generated tabs based on
data items; for example, one tab for each product.

Working with Decks
As we saw in the previous recipe, it is easy to build multi-tabbed reports using Active Reports.
Here, we will examine another technique that will give almost the same results. Deck Control
allows the IBM Cognos report author to create cards.

A card is a data container. Each card in a Deck Control will have different data. You can think
of cards as if they are tabs. In this recipe, we will create a report that contains a Deck with two
cards, a crosstab, and a chart, just like the previous report.

Getting ready
As with the last recipe, we will use the GO Data Warehouse (query) package.

Open the IBM Cognos Report Studio and select the GO Data Warehouse (query) package.
Select the Active Report template and click on OK. This will open a new Active Report that
we will use through this recipe.

How to do it...
In this recipe, we will see how to use Deck Control to build data cards. To do this, perform the
following steps:

1. From Toolbox, drag a Radio Button Group object into the new Active Report.

Chapter 10

243

2. Click on the Radio Button Definition icon.

3. In the Radio Button Definition pop-up window, delete Button Label 3 by clicking on
the X icon that will appear when you hover over it.

4. Rename Button Label 1 to Crosstab and Button Label 2 to Chart. Click on the
OK button to close the Radio Button Definition window.

5. Click on Radio Button Group. In the Properties pane, rename the control to
Crosstab / Chart Radio Button Control.

6. From the Toolbox items, locate the Deck Control object and drag it under the
Radio Button Group control.

7. Click on the Deck Cards Definition icon in Deck Control. Within the Deck Cards
Definition window, delete Card 3.

Working with Active Reports

244

8. Rename Card 1 to Crosstab and Card 2 to Chart. Click on OK.

9. Rename Deck Control to Crosstab / Chart Deck.

10. From the Toolbox items, drag the Crosstab object onto the Crosstab card.

11. From the Source pane, drag Product line to the rows of the crosstab. Drag Year
into the columns of the crosstab. Add Revenue as the crosstab measure.

12. Select the list from the Deck dropdown.

13. Now go to the Chart card. Drag Chart from Toolbox, select Column Chart as the
chart type, and then click on OK.

14. From the Source pane, drag Product line to Series: of the chart. Drag Year into
Categories: of the chart. Add Revenue as the chart measure.

Chapter 10

245

15. Now go back to Radio Button Group. Click on the Create a New Connection icon
that looks like this:

16. Within the Create a New Connection window, ensure that Source Control: is
Crosstab / Chart Radio Button Control and Target Control: is Crosstab / Chart
Deck. The Active Report variable should be Label.

Working with Active Reports

246

17. Click on the Connect button to make the connection and return to the report page.

18. Run the report to test it.

How it works...
Deck Control in Active Reports allows the report author to develop multi-tabbed reports. You
use Tab Definition to define as many tabs as you want in your report. You can also edit the
tab names as you wish or delete any of them if you don't need them any more in your report.

Once you have Deck Control in your report, you can deal with each card as if it is a separate
report. It is almost the same like what we saw in Tab control.

By creating a connection between Radio Button Group and Deck Control, we define the
interactivity between objects. When selecting different radio buttons, the end users will see
different cards. All the code to show and hide the cards is automatically written behind the
scenes and report developers need not worry about it.

While switching from one card to another, you can define an animated slide by selecting the
Deck and choosing the Slide Animation Direction property.

There's more...
Another control to check is the Data Deck object. This control is used to automatically create
a card for each data item value used to drive the Data Deck. Data Decks are useful if the
number of cards is unknown due to changing data. Data Decks are generally used to display
the same report data container for different contexts.

In the next recipe, we will see the Data Deck Control in action.

Chapter 10

247

Working with the Data Deck
We saw how to use the Deck Control in the previous recipe. The Data Deck is another great
control in IBM Active Reports that has a similar functionality as the Deck Control.

The Data Deck Control is used to automatically create a card for each data item value used
to drive the Data Deck. Data Decks are useful if the number of cards is unknown due to
changing data. Unlike Decks, Data Decks are generally used to display the same report
data container for different contexts.

Getting ready
In this recipe, we will use the GO Data Warehouse (query) package.

Open the IBM Cognos Report Studio and select the GO Data Warehouse (query) package.
Select the Active Report template and click on OK. This will open a new Active Report that
we will use through this recipe.

How to do it...
In this recipe, we will learn how to use the Data Button Bar in our reports. To do this, perform
the following steps:

1. From the Toolbox items, drag the Data Button Bar object onto the report.

2. Click on Data Button Bar. Go to the Properties pane and change the Name property
to Product line Data Button Bar.

3. Go to the Query Explorer tab and click on Query1. Change the name of the query
from Query1 to Data Button Bar Query.

4. Go back to the report page.

Working with Active Reports

248

5. From the Source items, drag Product line into the Labels section of
Data Button Bar.

6. From the Toolbox items, hold the right mouse button and drag the Data Deck object
onto the report.

7. After releasing the right mouse button, a menu appears. Select the option Insert
using existing query.

8. When prompted for a query, select Data Button Bar Query and then click on OK.

9. Click on Data Deck. Go to the Properties pane and change the Name property to
Product Line Data Deck.

10. From Toolbox, drag a List object onto Data Deck.

11. Go to the Query Explorer tab and click on Query1. Change the name of the query
from Query1 to List Query.

12. Return to the report page.

13. From the Source items, drag Product line, Product type, and Product onto the
List object.

Chapter 10

249

14. From the Data Item tab, drag Product line into the Values: drop zone of Data Deck.

15. Select the List object and go to the Properties pane. Open the Master Detail
Relationships property by clicking on it.

16. In the Master Detail Relationships dialog box, define a relationship between
Data Button Bar Query and the List Query by clicking on New Link.

Working with Active Reports

250

17. Click on the OK button to exit and then go back to the report page.

18. Select the Data Button Bar object and right-click to display the menu. Select Create
a New Connection.

19. Ensure that Source Control: is Product Line Data Button Bar and Target Control:
is Product Line Data Deck.

20. Click on the Connect button to create the connection.

21. Run the report to test it.

Chapter 10

251

How it works...
A Data Deck is a data-driven control. Each card in the deck is determined by the data items
inserted into the control.

To display the data that will be used in the Data Deck, we first defined a Data Button Bar
where we added the reference to the Product line. This way we will have a button for each
Product line that we have in our data. We then added the Data Deck that will use the same
query used for the Data Button Bar.

In the Data Deck we placed our object, a list object in our case, and we created a
Master-Details Relationship between the Product line in the Data Button Bar Query
and the List Query, so that anything selected in the Data Button Bar will be reflected
in the list.

The last step is to define the interactivity for the report between the Data Button Bar
and the Data Deck by defining a new connection between them.

Filtering data using Data Check Box Group
In this recipe, we will have a look at a technique that you can use while working with Active
Reports to filter the data in your report. This can be done using the Data Check Box Group
control. This control provides the report author with the ability to display multiple selectable
checkboxes based on the number of records returned by a data item. These checkboxes can
be selected in multiples and used to dynamically filter a data container.

Getting ready
As usual, we will use the GO Data Warehouse (query) package for this recipe.

Open IBM Cognos Report Studio and select the GO Data Warehouse (query) package. Select
the Active Report template and click on OK. This will open a new Active Report that we will
use through this recipe.

Working with Active Reports

252

How to do it...
In this recipe, we will learn how to use the Data Check Box Group control to filter the data.
To do this, perform the following steps:

1. From the Toolbox items, drag the Data Check Box Group object onto the report.

2. Click on Data Check Box Group. Go to the Properties pane and change the
Name property to Product Line Data Check Box Group.

3. Go to the Query Explorer tab and click on Query1. Change the name of the query
from Query1 to Data Check Box Group Query.

4. Go back to the report page.

5. From the Toolbox items, hold the right mouse button and drag the List object onto
the report.

6. After releasing the right mouse button, a menu appears. Select the option Insert
using existing query.

7. When prompted for a query, select Data Check Box Group Query and then click
on OK.

8. From the Source items, drag Product line and Revenue onto the List object.

9. From the Data Item tab, drag Product line into the Values: drop zone of Data Check
Box Group.

Chapter 10

253

10. Select the Data Check Box Group object and right-click to display the menu. Select
Create a New Connection.

11. Ensure that Source Control: is Data Check Box Group and Target Control: is the
List object.

12. Click on the Connect button to create the connection.

13. Run the report to test it.

How it works...
Data Check Box Group is a nice way to filter data in your report. As you have seen in this
recipe, by creating a connection between Data Check Box Group and the List object you can
control the data that should be present in your report. The Master-Detail relationship allows
filtering of list rows based on checkboxes, and you can build a more sophisticated logic using
this feature. For example, you can filter Product Lines, yet display Products on the List report.

Working with Active Reports

254

There's more...
There are some other controls to filter data. They are:

 f Data Toggle Button Bar

 f Data Drop-Down List

And it is very easy to change the control type that you want to use to filter data in your report.
To do this, find the Data Check Box Group control and then right-click on it. In the menu,
select Convert Control. In Convert Control you can find many options that you can convert
the current control into.

Select the Data Toggle Button Bar control.

Run the report to test it.

Chapter 10

255

Try another option in Convert Control such as Data Drop-Down List. Run the report to check
the output.

I would suggest that you spend some time trying the different controls that you can find
in Active Reports. Also, check how you can convert between them using Convert Control
if possible.

Charts and New
Chart Features

In this chapter, we will cover:

 f Chart formatting options

 f Converting a chart to another chart type

 f Working with pie charts

 f Getting started with bullet charts

 f Getting started with scatter charts

Introduction
Charts are without a doubt, a very powerful tool to deliver information. In IBM Cognos 10,
charts got a lot of improvements. In fact, IBM Cognos 10 marks a significant improvement in a
new charting engine that includes new chart types as well as many improvements in the chart
properties and styles.

In addition to some new chart types introduced in Cognos 10 such as the bullet charts
and tree maps, new chart properties are available such as the enhanced chart styles
(colors, palettes, fills, shadows, and images), colored regions, enhanced pie/donut charts,
summarizing small items, positioning and formatting notes, chart matrix layout control, and
conditional formatting of items in the legend and greater control over Legend positioning.

One of the options available in Cognos 10 charts is the Summarize small items option,
which can be used in pie, bar, and column charts. It allows us to focus data on top of
reports; for example, the top three product lines.

Charts and New Chart Features

258

In IBM Cognos 10, you have the choice either to work with the old legacy Cognos 8 charts
or use the new improved charting engine introduced in IBM Cognos 10. By default, the new
Cognos 10 charting engine is used. However, if you want to continue to use the Cognos 8
charting engine, you will have to change this in the Cognos options in Report Studio.

To choose a chart type, consider what you want the chart to illustrate. Different chart types
and configurations emphasize different things. I got the following table from the Cognos
Report Studio documentation to help you decide what kind of charts you can use based on
your requirements:

Purpose Chart type or configuration
Show contributions of parts to a whole f Bar charts

 f Pie charts
 f Stacked charts, when you want to display

measures of the whole as well as the parts
 f 100 percent stacked charts

Show trends in time or contrast values
across different categories

 f Line charts
 f Area charts
 f Bar charts
 f Column charts
 f Always place time in the horizontal axis

Compare groups of related information
against actual values

 f Bar charts
 f Radar charts

Compare different kinds of quantitative
information

 f Combination charts

Rank values in descending or
ascending order

 f Bar charts
 f Column charts

Show correlation between two sets of
measures

 f Point charts

Show key performance indicators in an
executive dashboard

 f Gauge charts
 f Bullet charts

Chapter 11

259

Chart formatting options
In IBM Cognos 10 Report Studio, there are many options available to improve and enhance
the chart objects based on the new charting engine.

In this recipe, we will check some of the formatting options available for charts in IBM Cognos
Report Studio.

Getting ready
For this recipe, we will use the GO Data Warehouse (query) package.

How to do it...
In this recipe we will create a new chart report and will try to explore some formatting options.
To do this, perform the following steps:

1. Open IBM Cognos Report Studio and select the GO Data Warehouse
(query) package.

2. In the New pop-up screen, select Chart and then click on OK.

Charts and New Chart Features

260

3. Another pop-up screen named Insert Chart appears. Select the Clustered Column
with 3-D Effects chart and then click on OK.

4. In the Source tab, open the Products dimension in Sales (query). Drag-and-drop
Product line to Series (primary axis):.

5. From Sales fact, drag Revenue to Default measure (y-axis):.

Chapter 11

261

6. From the Time dimension, drag Year to Categories (x-axis):.

7. Run the report to test it.

8. Now we want to change the color of the columns in the chart. To do this, we simply
choose a predefined Palette preset or create our own palette. In this recipe we will
choose one of the Palette presets.

Charts and New Chart Features

262

9. In the Style toolbar, click on Chart Palette Presets.

10. Select any palette such as the Metro palette and click on it.

11. To change the chart background effect, we can use Background Effects Presets.

12. In the Style toolbar, click on Background Effects Presets.

Chapter 11

263

13. Select any effect such as the Blue liner gradient with blue border preset. Click on it
to select it.

14. Finally, we want to change the width of the chart. In the Properties pane, locate the
Size and Overflow property and click on it.

15. Set the width to 800 px and then click on OK.

Charts and New Chart Features

264

16. Now run the report to test it.

How it works...
As we see in this recipe, 3D effects in charts have improved a lot in the new version of IBM
Cognos Report Studio. The look and feel of the new charts is much better than the older
version (v8) charts thanks to the new charting engine.

We created a normal column chart but we selected the Clustered Column with 3-D Effects
chart to get this shiny look. We defined the attribute of the chart as usual.

To enhance the look and feel of the chart, we used two new features in Cognos 10.

Chart Palette Presets
Though the palette concept was there in Cognos 8 Report Studio, it has changed completely
in Cognos 10. Cognos now shows the palettes on the main toolbar on top so they are easy
to locate.

The palettes in Cognos 10 are defined in ReportPresets.xml, which is located in <IBM
Cognos install location>\webcontent\pat\res directory.

You can use any of the predefined palettes in Chart Palette Presets, or you can even create
your own palette using your own colors that matches the whole report and company theme.

Chapter 11

265

Background Effects Presets
This property is used to change background effects for data containers like charts. When you
use Background Effects Presets, you can choose one of the predefined background presets
or you can create your own background effects. This defines the background of the whole
chart objects, including axis, legend, and so on.

You can also define a separate Plot Area Fill property to only fill up the background where the
chart is plotted.

There's more...
You should spend more time to check the properties and the features of charts in IBM Cognos
Report Studio 10.

Converting a chart to another chart type
You can convert a chart from one type (for example, a bar chart) to another type (for example,
a line chart).

When you convert an existing chart to a new chart type, IBM Cognos Report Studio keeps the
properties from the existing chart if those properties exist in the new chart type. For example,
if you convert a pie chart to a bar chart, Report Studio maps your chart palette to the new
chart, but does not map the exploding slices because the exploding slices property does not
exist in a bar chart.

Getting ready
In this recipe we will use the column chart we created in the last recipe. So if it is not open,
navigate in Cognos to the report created in the last recipe and open it in Report Studio.

How to do it...
In this recipe we will convert the column chart in our report to a bar chart. To do this, perform
the following steps:

1. In IBM Cognos Report Studio, open the report created in the previous recipe.

2. Now, click on the Chart object that we created to select it.

Charts and New Chart Features

266

3. Right-click on the Chart object and then click on Convert Chart.

4. The Convert Chart screen appears.

5. Select the Clustered Cylinder Bar with 3-D Effects chart and then click on OK.

Chapter 11

267

6. We want to change the measure used in the chart from revenue to gross profit. From
Sales fact, drag Gross profit onto Default measure (x-axis): to replace Revenue.

7. We want to add a reference to the values of Gross profit. This reference will be on
25 percent of the scale.

8. In the Properties pane, locate the Numeric Baseline property and click on it.

9. In the Baseline screen, create a new baseline based on Percent along axis.

10. Enter 25 as the required percentage and then click on OK.

11. Finally, we want to change the width of the chart. In the Properties pane, locate the
Size and Overflow property and click on it.

12. Clear the defined width, 800 px, and then click on OK.

Charts and New Chart Features

268

13. Run the report to test it.

How it works...
We saw in this recipe how easy it is to convert from one chart type to another type.

While converting a chart to another type, Report Studio will keep the data used in the first
charts as well as the properties and formatting option like palettes. The only concern here
is that the second type, which we converted to, has to have these properties.

So here in our example, the new bar chart was created with the same data items used in the
original column chart. We changed the measure for the chart to be Gross profit.

It is sometimes useful to have references in the chart that represent something meaningful
to your data or your business. That's why you will need to use the baseline property.

Baselines are horizontal or vertical lines that cut through the chart to indicate
major divisions in the data.
For example, you can add a baseline to show a sales quota or break-even
point. Each baseline represents a value on an axis. By default, the baseline
and its label appear in the legend.

Working with pie charts
Pie charts are useful for highlighting proportions. They use segments of a circle to show the
relationship of parts to the whole. To highlight actual values, use another chart type such as
a stacked chart.

Chapter 11

269

Pie charts plot a single data series. If you need to plot multiple data series, use a 100 percent
stacked chart. Reports in PDF or HTML format show a maximum of 16 pies or gauges per chart.

In this recipe, we will examine the pie chart and have a look at some of the new features
available in IBM Cognos Report Studio 10.

Getting ready
For this recipe, we will use the GO Data Warehouse (query) package.

How to do it...
In this recipe we will create a new pie chart and will check some of its properties. To do this,
perform the following steps:

1. Open IBM Cognos Report Studio and select the GO Data Warehouse (query) package.

2. In the New pop-up screen, select Chart and then click on OK.

3. Another pop-up screen named Insert Chart appears. Select the Exploded Pie with
3-D Effects and Rounded Bevel chart and then click on OK.

Charts and New Chart Features

270

4. In the Source tab, open the Products dimension in Sales (query). Drag-and-drop
Product line to Series (pie slices):.

5. From Sales fact, drag Revenue to Default measure:.

6. At this stage, run the report to test it.

7. Now, go to the Properties pane and locate the First Slice Angle property. By default,
the value is 90. Change it to 60 and then click on OK.

8. Locate the Exploded Slices property. Make sure the value is Slice 1 exploded 50.

9. Go to the Summarize Small Slices property and click on it. The Summarize Small
Slices screen appears.

Chapter 11

271

10. Check the Summarize slices smaller than a value checkbox. Enter 5 as Percentage
values and then click on OK.

11. Run the report to test it.

How it works...
As we saw in this recipe, pie charts are powerful visualization tools that got a lot of
improvement in IBM Cognos 10. Let's check some examples for these improvements.

Charts and New Chart Features

272

The Summarize Small Slices property
The Summarize Small Slices property specifies the summarization of small items, such as
slices, lines, areas, bars, or columns in the chart and how they are summarized. You cannot
summarize small items in charts that have matrix edges or in charts that have multiple
numeric axes.

In our example, we summarize all slices in the pie chart that have values less than 5 percent
to avoid displaying too many values in the chart that could make the chart unreadable. It
is common that users want to focus on certain values while displaying the remaining items
together as a separate category of Other.

The First Slice Angle property
The First Slice Angle property specifies the angle at which the first pie slice begins in a pie
chart. This feature is used to enhance the pie appearance and to control the position of the
first slice.

In our example we set the angle of the first slice to 60 degrees.

The Exploded Slices property
The Exploded Slices property specifies the slices that appear pulled out of a pie chart and
their appearance. This feature is also used to enhance the pie appearance and to control
which slice is to be exploded.

In our example we set the exploded slice to be the first slice, slice number 1, and also
we specified that the slice should be exploded by 50 percent. This determines how far the
exploded slice will be from the pie. The higher this percentage, the wider will be the space
between the slice and the pie. If we choose 100 percent, the exploded slice will be at the
maximum allowed space away from the pie.

Getting started with bullet charts
Bullet charts are a variation of bar charts. They compare a featured measure (the bullet)
to a targeted measure (the target). They also relate the compared measures, Revenue for
example, against colored regions in the background that provide additional qualitative
measurements, such as good, satisfactory, and poor.

Bullet charts are often used instead of gauge charts in executive dashboards. Bullet charts
can be horizontal or vertical.

A bullet chart contains the following components:

 f A bullet measure, which appears as the blue bar in the chart

 f A target measure, which appears as the black indicator in the chart

Chapter 11

273

 f From zero to five colored regions along the numeric scale to provide information
about the featured measure's qualitative state

 f A label that identifies the measures

 f A numeric scale

Getting ready
For this recipe, we will use the GO Data Warehouse (query) package.

How to do it...
In this recipe we will create a bullet chart and check some of its properties. To do this,
perform the following steps:

1. Open IBM Cognos Report Studio and select the GO Data Warehouse (query)
package. Select a new Chart report and click on OK.

2. Another pop-up screen named Insert Chart appears. Go to the Bullet section,
select Horizontal Bullet, and then click on OK.

The bullet chart appears now in the Report Studio work area.

3. From the Source pane, open Sales (query) and then open Sales fact.

4. Drag Revenue to Bullet Measure.

Charts and New Chart Features

274

5. Drag Planned revenue to Bullet Target.

6. From the Properties pane, locate the Legend property and click on it.

7. The Legend pop-up screen appears. Check the Show Legend checkbox.

8. Select the required position for the legend and then click on OK.

9. At this stage, run the report to test it.

Chapter 11

275

10. Again in the Properties pane, locate the Colored Regions property and click on it.

11. The Colored Regions pop-up screen appears. As you can see, there are three
predefined colored regions: 0-50 percent, 50-75 percent, and 75-100 percent.
You can customize these colors as per your requirements. Colored Regions can be
defined based on any numeric value: Percent on Axis, Mean, Statistical maximum
or minimum, or you can even define them based on a Query calculation.

Charts and New Chart Features

276

12. Make the necessary changes and then click on OK.

13. Now run the report to test it.

How it works...
Let's take a look at the previous chart.

First, we have the blue bar that indicates the actual revenue. The short black bullet indicates
the planned revenue. By putting them in the same context, you can get the feeling of how
close or far your sales are from the planned target, and this is what the bullet chart is
all about.

When you combine this with colored regions in the background, you can have more insight.
The colored regions can be numerical colored values or percentages (0-50 percent, 50-75
percent, and 75-100 percent) as we saw in our example. They can even be defined using
query calculations. For example, you can define them to show the Gross Profit or the Product
Cost. This way we can add even more data and value to this simple and concise chart. This
single chart can help us compare measures as well as display additional information.

There's more...
The Revenue and Target revenue in our bullet chart are the overall values for our sales.
Now, suppose that we want to get a bullet chart for each product line to get more insight
about our data.

To do this, drag the Product line for the Products dimension into the bullet chart's Categories.

Now run the report to test it.

Chapter 11

277

Getting started with scatter charts
Business is always decided on sales and marketing strategy by looking at the sales volume
and the revenue generation for each product line.

Businesses would like to expand the product lines that generate high revenue despite low
sales volume. They will keep the high sales, high revenue items as they are and discontinue
the low selling, low revenue items.

For this sort of requirement, we will use scatter chart with colored regions.

Getting ready
For this recipe, we will use the GO Data Warehouse (query) package.

How to do it...
In this recipe we will have a look at how to create a scatter chart and how to define its
properties. To do this, perform the following steps:

1. Open IBM Cognos Report Studio and select the GO Data Warehouse (query)
package. Select a new Chart report and click on OK.

2. A pop-up screen named Insert Chart appears. Go to the Scatter, Bubble section,
select Scatter with 4 colored Quadrant and Transparent Markers and then click
on OK.

Charts and New Chart Features

278

3. The scatter chart now appears in the Report Studio work area.

4. From the Source pane, open Sales (query) and then open Sales fact.

5. Drag Revenue to the X-axis measure.

6. Drag Quantity to the Y-axis measure.

7. Open Products and drag Product line to the chart's Series field.

8. In the Colored regions section, click on Excellent and in the properties, change
the text from Excellent to High Revenue - High Sales (Continue).

9. Again, change the text from Poor to Low Revenue - Low Sales
(Discontinue).

10. Finally, remove the first Average and change the text for the second one to High
Revenue - Low Sales (Expand).

Chapter 11

279

11. Now run the report to test it.

Charts and New Chart Features

280

How it works...
The scatter chart is a very powerful chart that can show up to three measures. It is very useful
for exploring correlations between different sets of data. By positioning dots over X and Y axes,
it can quickly show a comparison of product lines over Revenue and Sales Volume. By adding
colored regions to it, Cognos 10 has increased the expression power of this tool.

More Useful Recipes

In this chapter, we will cover the following:

 f Timing report execution

 f Missing values versus zero values

 f Overriding data formatting using patterns

 f Setting up conditional drill-throughs

 f Dynamically switching between reports using an iFrame

 f Freezing column titles

Introduction
In this chapter, we will have a look at some more useful tricks and techniques that will help us
use the Cognos Report Studio more efficiently.

Timing report execution
We often want to record the exact time taken by a report to execute. This recipe will show you
a technique that is tried and tested and can be used repeatedly to examine the performance
of a report at different loads and volumes on the data source.

Getting ready
Take any report whose execution time is to be recorded. The steps for this recipe are to be
carried out in Cognos Connection Portal, not Cognos Report Studio.

More Useful Recipes

282

How to do it...
In this recipe, we will see how to get the time taken by the report to be executed by getting the
start time and the completion time for the report from Cognos Connection Portal.

1. Go to IBM Cognos Connection Portal and locate the report.

2. Click on the Create Report View button and create a report view of this report in the
desired location.

3. Open the Properties pane of the report view by clicking on the Set Properties button.

4. Go to the Report View tab. Uncheck the Prompt for values option.

Chapter 12

283

5. Click on the Set link for Prompt values. This will bring the prompt page up.

6. Select the prompt values and save them. Click on the OK button to come back to the
list of reports and report views.

7. Now click on the Run with options button and choose the following options:

 � Format: PDF

 � Delivery: Save the report

 � Uncheck the option Prompt for values

8. Click on the Run button.

More Useful Recipes

284

9. Now from the administrator, open the Past Activities view. Once the report is
executed, record the start time and completion time.

How it works...
Here we are creating a report view so that prompt values can be saved, and then we run it in
the background so that timings can be noted from the schedule management.

The report view
The report view sits on top of the report. You can set different properties for it (delivery
method, output format, and so on) as well as the prompt values, without affecting the
actual report.

If the main report is updated, changes are automatically reflected in the view.

Scheduling
When we choose the delivery method Save Report Output, the report execution happens in
the background using the batch processing service. Using the Past Activities view, we can
see when exactly the report execution started and when it ended. This gives us the exact time
taken by the report to execute.

When users use the report interactively, they prefer to see the output in the HTML format. This
retrieves only a pageful of data at a time, and hence the time taken to produce the first page
does not accurately reflect the time that will be required to generate the whole report. Also,
checking the time manually can be error prone. Hence, it is advisable to use the scheduler
as shown in the recipe, and do several runs with different prompt selections to record the
execution timings.

Chapter 12

285

There's more...
You can create multiple report views of the same report to choose different prompt values and
output formats.

Also, whenever you want to run performance tests on a particular data source, you can create
a job to run all the report views against that data source. This will allow you to record the
timings for all and compare them with prior runs.

Please note that re-running the same report or report view with exactly same parameters
immediately after a run will result in Cognos showing cached values instead of hitting the
data source again. Hence, such situations should be avoided when checking performance.

Another way of checking report execution time is looking at COGIPF_RUNTIME NUMBER data
items from the Audit package if you have access to the Audit package and if auditing is
turned on at the server.

Missing values versus zero values
Missing values in the data source can mean two things in real business: either the data is
zero or it is missing. For example, in the case of a sales transaction-based system, if there
is no data for a product for a certain month, it means there was no sale of that product in
that month. However, in some other systems, for example, yearly returns of different stocks
missing data might just mean that data is not available for a certain reason. However,
it certainly doesn't mean the return was zero.

Hence, it is important to clearly highlight the missing value as zero or missing in the report.

Getting ready
Create a simple crosstab report with all Product line on rows and Month key on columns from
GO Data Warehouse (Query)/Sales. Choose Quantity and Unit cost as sales measures.

More Useful Recipes

286

How to do it...
In this recipe we will see how to avoid missing values in the report by replacing them with
more meaningful values like zero or N/A.

1. Firstly, we will run the report to see if there are any missing values.

We can see that the Quantity and Unit cost values are missing for certain columns.

2. Now go to Report Studio and choose the Quantity measure from the
crosstab intersection.

3. From the Properties pane, open the Data Format dialog box. Set Format type to
Number and Missing Value Characters to 0.

Chapter 12

287

4. Similarly, set the data format for the unit price measure. However, this time set
Missing Value Characters to N/A.

5. Run the report to test it.

How it works...
As discussed earlier, the missing values can mean different things. Here, when the sales
quantity is missing, we know the sale was zero for the product for that period. However,
the missing unit price doesn't mean it was zero. It just means that there is no data for
that combination.

By setting the appropriate Missing Value Characters columns, we are ensuring that the
correct message is conveyed through the report.

There's more...
You can also specify characters to be displayed in case of zero value, divide by zero, and some
more conditions.

More Useful Recipes

288

Overriding data formatting using patterns
In Cognos Report Studio, we can define the formatting of data items that we have seen in
many recipes. However, sometimes the formatting defined in the report does not take effect.
In this recipe, we will consider one such scenario.

Getting ready
Create a simple crosstab report with all Product line on rows and Month key on columns
from GO Data Warehouse (Query)/Sales. Choose Revenue and Planned revenue
as measures.

How to do it...
In this recipe we will see how to use patterns in the data format. To do this, perform the
following steps:

1. Firstly, let's run the report to check how the measured data are formatted.

2. You will notice that some numbers have two decimal places while some have one
decimal place.

3. Now, go back to Cognos Report Studio. Select the measures and open the data
format again.

Chapter 12

289

4. This can be done in the data format using the Number of Decimal Places option, but
this time we will check another functionality. Go to Pattern and define it as #,###.0
as shown in the following screenshot:

5. Run the report to test it. This time the report will show numbers up to one decimal
point only.

More Useful Recipes

290

How it works...
Using patterns can provide similar results as basic data formatting tasks. In this example, you
can set the number of digits to appear after the decimal point. You can achieve these types
of results with a pattern, or you can set the No. of Decimal Places property. Patterns allow
flexibility for more complex requirements. You can format data so that it matches any pattern
of text and numbers when default formats are not appropriate.

Setting up conditional drill-throughs
IBM Cognos Report Studio allows you to define drill-through. However, there is no facility to
define conditional drill-throughs. This recipe will show you how to achieve it.

We will use the report created in the previous recipe for this recipe.

Getting ready
Create two dummy reports called Drill 1 and Drill 2.

Open the report created in the previous recipe in Cognos Report Studio.

How to do it...
In this recipe we will create drill-through from the crosstab intersection to a dummy report
(Drill 1). Then, we will try to achieve a conditional drill-through to another report (Drill 2)
for certain months. To do this, perform the following steps:

1. First of all, create drill-through from the crosstab intersection to the first report
(Drill 1). We saw how to create such a drill in earlier chapters of this book.

2. Now select the text item from the crosstab intersection, hold the Ctrl key and drag
the text item a little to the left. This will create a copy of this text item within the
same intersection.

3. For this newly created copy of the text item, update the drill-through link to point
to Drill 2.

Chapter 12

291

4. Now, we will define the condition to switch between the links. Create a Boolean
variable called Is_2004. Define the condition as: number2string ([Query1].
[Month key]) contains '2004'.

5. Go back to the report page. Attach the conditional variable Is_2004 as Style
Variable to both the drill links.

6. Using Conditional Explorer, set Box Type to None for the left link when Is_2004 is
Yes, and then do the same for the right link when Is_2004 is No.

That is, turn the visibility off for one of the links depending on the condition.

7. Run the report to test it.

How it works...
Within the drill-through definitions dialog box, there is no reference to the conditional
variables. So, Report Studio provides no direct way to switch the drill target depending
on a condition.

As a solution, we are creating a copy of the text item here and then we hide one of them
based on a condition. As the text items go to different targets, we achieve conditional
drill-through in the report.

More Useful Recipes

292

There's more...
Instead of using Style Variable and Box Type, we can use Render Variable to directly set
when the item should be visible. However, in order to use Render Variable, we will need
to use String Variable instead of Boolean.

Dynamically switching between reports
using an iFrame

In this recipe, we will have a look at how to use one report as a container to call or display
different reports. We will use an HTML element called iFrame that allows the browser window
to be split into segments. Each segment can be updated separately.

We will give users the ability to choose which report contents to display and allow them to
toggle between two reports by clicking on the appropriate button. You can build upon this idea
to create many practical solutions such as displaying help, toggling graphs, and providing tabs
to display different reports.

Getting ready
Create a simple list report with product-related columns (the product query subject) and save
it as iFrame–Products.

Create another simple list report with retailer-related columns (the retailer query subject) and
save this report as iFrame–Retailers.

Chapter 12

293

How to do it...
In this recipe we will see how to use the HTML element called iFrame to split the browser
window into segments. Each segment will show a different report. To do this, perform the
following steps:

1. Go to Connection Portal and locate the reports we created previously.

2. Click on the Set Properties button for iFrame–Products. From the General tab,
click on the View the search path, ID and URL link.

3. Copy the default action URL and save it somewhere for use in later steps. This
URL will look similar to: http://cognosdemo:80/ibmcognos/cgi-bin/
cognos.cgi?b_action=cognosViewer&ui.action=run&ui.objec
t=%2fcontent%2ffolder%5b%40name%3d%27Samples%27%5d%2ffo
lder%5b%40name%3d%27Models%27%5d%2fpackage%5b%40name%3d%
27GO%20Data%20Warehouse%20(query)%27%5d%2ffolder%5b%40na
me%3d%27My%20Reports%27%5d%2ffolder%5b%40name%3d%27Chapt
er%2010%27%5d%2freport%5b%40name%3d%27Report%2010.5%20-%20
iFrame%e2%80%93Products%27%5d&ui.name=Report%2010.5%20-%20
iFrame%e2%80%93Products&run.outputFormat=&run.prompt=true.

4. Similarly, save the default action URL for the iFrame–Retailers report.

5. Now go to Cognos Report Studio and create a new blank report.

6. On the report page, drag a new HTML Item onto the page. Define the code as follows:
<script language="javascript" type="text/javascript">
function showReport(x)
{
switch(x)
{

More Useful Recipes

294

/* Replace the URL in the following stmt with the one you saved
for iFrame-Product report */

case 1: document.getElementById("dynamic_report").src =
"http://cognosdemo:80/ibmcognos/cgi-bin/cognos.cgi?b_
action=cognosViewer&ui.action=run&ui.object=%2fcontent%2ffolder%
5b%40name%3d%27Samples%27%5d%2ffolder%5b%40name%3d%27Models%27%5
d%2fpackage%5b%40name%3d%27GO%20Data%20Warehouse%20(query)%27%5d
%2ffolder%5b%40name%3d%27My%20Reports%27%5d%2ffolder%5b%40name%
3d%27Chapter%2010%27%5d%2freport%5b%40name%3d%27Report%2010.5%20
-%20iFrame%e2%80%93Products%27%5d&ui.name=Report%2010.5%20-%20
iFrame%e2%80%93Products&run.outputFormat=&run.prompt=true";
break;

/* Replace the URL in the following stmt with the one you saved
for iFrame-Retailer report */

case 2: document.getElementById("dynamic_report").src =
"http://cognosdemo:80/ibmcognos/cgi-bin/cognos.cgi?b_
action=cognosViewer&ui.action=run&ui.object=%2fcontent%2ffolder%
5b%40name%3d%27Samples%27%5d%2ffolder%5b%40name%3d%27Models%27%5
d%2fpackage%5b%40name%3d%27GO%20Data%20Warehouse%20(query)%27%5d
%2ffolder%5b%40name%3d%27My%20Reports%27%5d%2ffolder%5b%40name%
3d%27Chapter%2010%27%5d%2freport%5b%40name%3d%27Report%2010.5%20
-%20iFrame%e2%80%93Retailers%27%5d&ui.name=Report%2010.5%20-%20
iFrame%e2%80%93Retailers&run.outputFormat=&run.prompt=true";
break;
}

}
</script>

<button type="button" onclick="showReport(1);">Products</button>
<button type="button" onclick="showReport(2);">Retailers</button>

For the URL shown in bold, you need to place the default action URLs that you saved
for both the reports in the first step.

7. Now create another HTML item on the report page and define the code as:
<iframe name="dynamic_report" src="" frameborder="0" height="90%"
width="100%"></iframe>

8. The report will look like a blank page with two HTML items on it.

Chapter 12

295

9. Run the report to test it. You should see two buttons called Products and Retailers.
When you click on Products, the iFrame-Products report will be displayed. By
clicking on the Retailers button, you can display the iFrame-Retailers report.

More Useful Recipes

296

How it works...
Here, we are using the iFrame element of HTML to achieve dynamic content on the report
page. In one HTML item, we define an iFrame element called dynamic_report and set it's
source (src) property to blank. Then in another HTML item, we define two buttons and one
JavaScript to dynamically change the source (src) property of the iFrame. Depending on
which button is clicked, we set the source of iFrame to the default action URL of either the
iFrame-Product report or the iFrame-Retailers report.

When the report first loads, the iFrame is empty (because the source property is blank). As
soon as a user clicks on any of the buttons, the iFrame source is changed by the JavaScript.
This causes either of the reports to execute and the output is loaded on the page. This way it
allows us to dynamically switch between the reports contents while staying on the same page.

Please note that this recipe will work only on Internet Explorer.

There's more...
Please note that you should append &cv.toolbar=false&cv.header=false to the URLs
in the JavaScript. This will hide the Cognos toolbar and header from showing up again in
the iFrame.

Also, you should try and extend this concept to create other dynamic solutions, for example
displaying help, toggling graphs, providing tabs to display different reports, and so on.

Freezing column titles
Let's say we have a report that is going to go over multiple pages when viewed online (HTML).
Instead of users clicking on Page Down each time, we want to show all rows on one page so
that users can simply scroll down.

However, when they scroll down, we want to keep the Column Titles frozen on top so the
report can be easily read.

Getting ready
Create a simple list report with some data items such that it will produce a long-list report.

Chapter 12

297

How to do it...
In this recipe we will see how to freeze the header of a list table by creating a specific style for
this and applying it into the list headers. To do this, perform the following steps:

1. Drag a new Block from the toolbox and place it on the report page. Pull the List
Report inside Block.

2. Select Block and define its height as 800 px and then select the scrollbar option
for Overflow.

3. Then, select the List data container and set its Rows per page property to 500.

4. Now drag a new HTML item onto the page above Block. Define it as follows:
<style>
.frozenTitles{
 background-color: #E7E5E5;
 top: expression(parentNode.parentNode.parentNode.
parentNode.scrollTop-1);
 position: relative;
}
</style>

5. From Page Explorer, open Classes.

More Useful Recipes

298

6. Paste the following fragment in Local Classes and it will create a new class:
RSClipboardFragment version="2.0">
<classStyle name="frozenTitles" label="My Frozen Headers"/>
</RSClipboardFragment>

You can see this in the following screenshot:

7. Now go back to the report page, hold down the Ctrl key and select all the individual
Column Titles (headers). From Properties, open Classes and remove existing
classes. Add the class that we created called My Frozen Headers.

8. Run the report to test it. See that the report shows all the rows (maximum 500) on
one page. When you scroll down, Column Titles on top remain frozen making it easy
to go through the whole report.

Chapter 12

299

How it works...
First of all, we have put the List Report in a block and defined the height of the block to be
800 px. As the report is going to be longer than that, we have defined the overflow behavior to
display scrollbar. This way when the report is rendered, the block displays a scrollbar and the
report scrolls within the block.

Now the only thing remaining is to keep the headers frozen so they always show when
we scroll down. This is done by overriding the style header of the header cells with our
hand-coded class that defines the top position of cells relative to ScrollBar [top:
expression(parentNode.parentNode.parentNode.parentNode.scrollTop-1);].

Hence, when we scroll down, the header cells also move down effectively looking frozen on
the top of the page.

There's more...
In Cognos v10, Report Viewer now comes with a feature that users themselves can choose
to freeze the titles without doing anything special in the report. This works with any report.

For that, when users view the report online in Report Viewer, they can right-click
anywhere on the data container and choose to freeze the column heading as shown
in the following screenshot:

More Useful Recipes

300

This is effective for only that time; so next time when they run the report, they will have to
choose to freeze the heading again. In order to achieve the freezing by default for all users,
please refer to the technique explained in this recipe.

Best Practices

In this chapter, we will cover:

 f Reducing the number of query items

 f Highlighting hidden items

 f Using relative paths for images

 f Controlling JavaScript file execution

 f Customizing classes for report-wide effect

 f Creating templates

 f Regression testing

 f Commenting the code

 f Naming data containers (lists, crosstabs, and charts) for use in Cognos Workspace

 f Enabling larger worksheet size for Excel 2007

Introduction
In this chapter, we will see some of the best practices followed in the world of IBM Cognos
report development. Once you learn them and start using them in your day-to-day life, you will
notice that these practices not only save your time but also reduce the number of defects and
benefit the ongoing maintenance of reports.

Reducing the number of query items
From the maintenance and documentation perspective, it is advisable to keep the number
of query items in report query subjects to minimal. In this recipe, we will see some good
practices to ensure this.

Best Practices

302

Getting ready
We will use the dimensional GO Sales (analysis) package for this recipe.

From Tools/Options, check the option of Alias member unique name and uncheck
Delete unreferenced query objects.

How to do it...
In this recipe we will see how to use some useful options available in Cognos Report
Studio. This can be helpful and will make the reports more clear. To do this, perform
the following steps:

1. We will start by creating a simple crosstab report. Open IBM Cognos Report Studio
for a new crosstab report. Drag the Time/Year level onto columns.

Chapter 13

303

2. From the Toolbox pane, drag a new Query Calculation onto rows.

3. Give it a name, for example, ProductLines and choose the Products hierarchy.

4. In the Set Expression window, expand the Products hierarchy to locate children
of Products.

Best Practices

304

5. Select the three children of Products and drag them onto the expression definition.
They will appear as comma-separated values. Put them within a SET() function.

6. Pull Revenue from the measures into the crosstab intersection.

7. Run the report to test it. It should work fine. Now go back to the Studio and examine
the report Query Explorer.

Chapter 13

305

8. Now go back to the report page and delete Year from columns. Drag Month
there instead.

9. Go back to Query Explorer to examine the query subject. Notice that both Year and
Month are present.

10. Run the report to test it. It works fine. However, there is a redundant item in the query
subject (that is, Year) that is not used anywhere in the report.

11. Now go back to Cognos Report Studio. From Tools | Options, uncheck the option
of Alias member unique name and check Delete unreferenced query objects
(opposite of what we had done at the beginning).

12. Delete the crosstab from the report page. Again create it by following steps 1 to 9.
Examine the query subject this time. You will see that only three query items are
present this time.

13. Finally, we will try one more thing. Select Month from columns and hit Ctrl + X to cut
it. You will see that it is removed from crosstab.

14. If we want to bring it back, we have two places. Either we can drag it from the Source
pane, or we can get it from the Data Items pane.

15. Drag it from the Model or Source tab. Notice that it is called Month 1 now and a
duplicate query item is created for it in the query subject.

Best Practices

306

16. Hit the Undo button. Drag it this time for the Data Item pane. Notice that no new data
item is created this time.

How it works...
We have already talked about the environment options in this book previously. This recipe
highlights how these options can be useful in reducing the number of query items.

Alias member unique name
By checking this option, IBM Cognos Report Studio creates a new data item for each member
used within any data item or filter. This means a greater number of query items. We uncheck
this option to stop the creation of separate aliases.

Delete unreferenced query objects
When this is unchecked, the data items that you delete from the report page are still
maintained within the query subject. Hence, we check this option to automatically clear
the unused items. You can still cut the item from the report purposely to keep it in the
query subject, if required.

Dragging items from the Data Items pane
Whenever an item is already present in the query subject, if it needs to be pulled again on
the corresponding container, it should be pulled from the Data Items pane. Dragging it again
from the model/source would mean creation of a duplicate query item. This duplicate query
item will have name appended with the number 1. Use this as an indication to identify the
duplicate item and remove it.

Chapter 13

307

Highlighting hidden items
We have seen that it is possible and in fact suggested to turn on the option of Show Hidden
Objects from visual aids. This recipe will show you a best practice related to that.

Getting ready
We will use the GO Data Warehouse (query) package for this recipe. Open IBM Cognos Report
Studio and turn on the Show Hidden Object feature from visual aids.

How to do it...
In this recipe we are going to highlight the hidden column with the yellow color. To do this,
perform the following steps:

1. Create a simple list report with Product line, Product type, and Product as columns.

2. Select the Product type column and turns its Box Type to None. As we have chosen
to show hidden items, we can still see the column on the report page.

3. Now from the Background Color property, select yellow.

4. Run the report to test it.

Best Practices

308

How it works...
In this recipe, we have hidden a column by changing its Box Type property. As this item is now
not going to appear on the report, we have the liberty to change its visual appearance. We
changed its background color to yellow, which clearly distinguishes the item from the rest.

Next time, when any other developer opens this report in Report Studio or when you come
back to it after several weeks, you don't have to refer to any documentation or check any
object property to know which items are hidden. You can just turn on the Show Hidden Items
feature and everything marked with yellow is part of the report but hidden in the output.

This is just a best practice to follow that helps in maintainability. It reduces the need for
documentation and troubleshooting time.

Using relative paths for images
We have seen some recipes in this book where we displayed images on the report (for
example, the traffic signal one). This recipe will show a best practice related to that.

Getting ready
We will use the report created in the last recipe for this one.

How to do it...
In this recipe we will learn how to use relative paths for images in our report. To do this,
perform the following steps:

1. Open the report in Cognos Report Studio. From the Insertable Objects/Source pane,
drag Product image onto the list as a new column.

2. Run the report to test it.

Chapter 13

309

3. It is possible that the images are not displayed.

In that case, log on to the server and make sure the Go Sales sample images are
located in the {installation folder}\webcontent\samples\images folder.
If not, put them there from the sample provided with this book.

Best Practices

310

4. After putting the images in the correct folder, run the report and they should be
displayed correctly.

5. Now go back to IBM Cognos Report Studio. Double-click on the Product image
column. This will open the data expression window.

6. Browse the model tree from left to locate the Product image column. Now click on
the Select Value button to browse values from top.

Chapter 13

311

Notice that the values are relative paths and not absolute paths.

7. Now let's see how it works.

How it works...
The URL of the image object can be defined as Absolute or Relative. When we say Relative,
it is with respect to the Webcontent folder within IBM Cognos Server's installation directory.

Hence, ./samples/images/P01CE1CG1.jpg will translate to C:\Program Files\ibm\
cognos\c10_64\webcontent\samples\images\P01CE1CG1.jpg (assuming that the
installation directory on the server is C:\Program Files\ibm\cognos\c10_64).

It is best practice to always give a relative path for the images and put the images in the
Webcontent folder, as it allows the report to be promoted to other environments (testing,
UAT, production, and so on) without changing any code. If we had provided the absolute
path and the images were hosted on the Cognos server itself, the promotion of the report
to another environment would mean that the URL of the images would need to be changed.

There's more...
It is to be noted that if you have an organization-wide repository of images that are hosted
on a different server to the IBM Cognos server, you can use an Absolute path. The path
won't need any change when the report is promoted to a different Cognos environment.

Also for the Relative path to work in distributed installation with multiple application servers,
the images must be copied on all Cognos application servers.

Best Practices

312

Controlling JavaScript file execution
In Chapter 3, Using JavaScript Files – Tips and Tricks, we saw many recipes to manipulate
the prompts. However, it is to be noted that JavaScript files are executed every time the page
loads. Hence, it is important to control the execution of certain scripts.

This recipe will show you why controlling the JavaScript file execution is necessary in certain
cases and how to do it.

Getting ready
We will use the report created in the Defining dynamic default values for prompts recipe of
Chapter 3, Using JavaScript File – Tips and Tricks for this one.

How to do it...
In this recipe we will have a look at how we can control the JavaScript execution by doing a
simple modification to the original script. To do this, perform the following steps:

1. Open the report in IBM Cognos Report Studio and save it with a different name
because we are going to change it.

2. Run the report to see what it is doing. We have already written the JavaScript in
this report to default the date to second entry from top, where dates are sorted
from recent to old. Hence, it defaults to 200711 as per the data available in the
sample database.

3. Change the date to 200712 and run the report.

4. Once the report is rendered, hit the RUN button to re-run the report.

5. Notice that the date prompt goes back to 200711. This can be quite annoying
especially when you have multiple prompts on the page and all of them default
to certain values.

Chapter 13

313

6. Close the window and go back to IBM Cognos Report Studio.

7. In the prompt page, double-click on the HTML item kept in the report footer beside
the Finish button.

8. Replace the code with the following:
<script>
function defaultSelect()
{ /* Below is the original code to change selection. We just
encompassing it in a function */
var theSpan = document.getElementById("A1");
var a = theSpan.getElementsByTagName("select");
/* This stmt return an array of all value prompts within span */
for(var i = a.length-1; i >= 0; i--)
/* now loop through the elements */
{var prompts = a[i];
if(prompts.id.match(/PRMT_SV_/))
 { prompts.selectedIndex = 3;
 }
canSubmitPrompt();
}
}
</script>
<button type="button" onclick="defaultSelect()" class="bt"
style="font-size:8pt">Apply Defaults</button>

Best Practices

314

9. Run the report to test it. Observe that the date prompt is now not defaulting to any
value. However, there is a new button called Apply Default in the footer. Hit that
button and date will default to second from top (that is, 200711).

10. Change the date to 200712 and hit the Finish button to run the report. After
the output is rendered, hit the Run button again and notice that the date is still
200712. It does not automatically going back to 200711, unless we hit the Apply
Default button.

How it works...
Here we haven't written much new code. We have just put the existing JavaScript that selects
the date into a function called defaultSelect(). Then, we have added one line of HTML
code (the BUTTON tag) to generate a button in the footer.

When a user clicks on the button, the function is executed, thus changing the date selection
to second from top. This way we are stopping the script from automatically executing when
page loads.

This is very useful when there are many prompts on the page and many of them are
commonly used for known values. Users can be educated to hit the button to default those
prompts to the known values, thus saving their time. Then users can override the required
prompt selections and on re-run those values are retained.

Customizing classes for report-wide effect
We will now see a best practice to apply standard formatting across the report and save
development time at the same time.

Chapter 13

315

Getting ready
Create a new report using the GO Data Warehouse (query) package. Pull multiple crosstabs
onto the report page and populate them with valid rows, columns, and measures, similar to
the one shown in the following screenshot. Create some drill links as well.

How to do it...
Let's work towards applying some standard formatting across the report. To do this, perform
the following steps:

1. Open the Page Explorer pane and click on Classes.

Best Practices

316

2. Locate Crosstab member cell from the Global Class Extensions list. Change its
Font to Bold and Background Color to #FFCC99.

3. Similarly, locate the hyperlink object and change its Foreground Color to Black.

4. Go back to the report page. Notice that the changes you made have reflected
everywhere and standard formatting is applied to all Crosstab members and
Drill links.

5. Run the report to test it.

How it works...
The objects on the report page inherit their properties from certain classes. Report
Studio allows us to modify these classes. On doing so, the changes reflect on all the
objects belonging to the class. This is a better way than selecting every object and
changing their properties, which is error prone.

This way we can apply standard formatting across the report and also save time.

Chapter 13

317

Creating templates
In all organizations, the reporting suite is required to follow the standard formatting. Similar
to other tools and technologies, IBM Cognos Report Studio also allows you to create and use
templates in order to maintain the standards, reduce cosmetic errors, and save time.

Getting ready
We will amend the report created in the previous recipe in this recipe.

How to do it...
We have already defined the formatting for crosstab members and hyperlinks. To create a
template, you want to go ahead and define the standard report header and footer.

Best Practices

318

You might want to put the company logo in the header. To do this, perform the following steps:

1. From the menu, go to File | Convert to Template.

Notice that the Model/Source pane becomes empty and all data items are removed
from the report.

2. From the menu, go to File | Save As. Give the filename Template. Notice that the
icon created for this is different than other reports.

3. Now we will prepare the XML specification of this template to be inserted in the
server files. For that, select Tools | Copy Report to Clipboard from the menu.

4. Go to any XML editor and paste the XML specifications that we just copied.
Now perform the following:

1. From the <report> tag, remove the xmlns and template attributes.
So it should look like this:

 <report expressionLocale="en ">

2. Add a <template> tag just above it:
 <template name="PACKTSample "PACKT Sample Template">

3. Add </template> at the end of the file (just after </report>).

4. Copy the whole specification on the clipboard.

5. Now, on the Cognos application server, open the Cognos installation directory.
Locate the C10_location/webcontent/pat/res/templates.xml file.

Chapter 13

319

6. Make a backup of the file for failover and then open this templates.xml file.
Paste the specification that we copied in step 4 under the <xmlFragment
id="ReportTemplates"> tag. Save the file and close it.

7. The last step is to update the Resources.xml file. Locate c10_location/
webcontent/pat/res/Resources.xml and open in the XML editor.

8. Find the <listItems> tag. Add following line in a similar fashion as the existing
<listItem> tags:
<listItem label="PACKT Template" icon="icon_blank.gif"
templateName="PACKT Sample Template"/>

You can also see this in the following screenshot:

9. Save the file and close it.

10. Open a new instance of IBM Cognos Report Studio. Notice that a new option appears
in the dialog box for PACKT Template.

Best Practices

320

Select this option and check that the template we created initially appears.

Now you can create a new report as usual. You are rest assured that formatting of
objects and other components that you placed on the templates are maintained
every time you create a new report using this method.

How it works...
This recipe looks like a long process but it is a one-time task that is extremely useful. We have
already discussed the advantage of having templates.

If you are going to create many reports that need organization-standard formatting, some
common scripts and components, and generic header and footer elements, it is highly
recommended that you take time to prepare a template for it.

It is common to see a Cognos developer opening one existing report, making a copy of it and
then updating it, thus using the base report as the template. While this serves the purpose
very well, there are chances of accidently overwriting the templates. Especially in the case of
multideveloper environment, it is suggested that one who has access to server installations
performs this operation of defining a standard template and rest of the team uses it from the
New Report dialog box.

Regression testing
Business Intelligence and Data Warehousing and Reporting systems need ongoing
maintenance. New data comes in every day, volume grows, and business rules change. All
this can impact the existing reports structurally and performance-wise. In this recipe, we will
quickly see one way of doing regression test every time anything changes in the system.

Getting ready
We will just discuss the concept here and extend the Timing report execution recipe of
Chapter 12, More Useful Recipes.

How to do it...
We saw in the Timing report execution recipe of Chapter 12, More Useful Recipes that we can
create Report View, save certain parameters for it, and then run it in the background.

1. We will now add upon this concept. For regression, you will need to create report
views for each report. Save all of them in one folder.

Chapter 13

321

2. Create a new job by clicking on the new job icon.

3. Add all the report views to this job. Change Submission of steps to In sequence and
Continue on error.

4. Change the defaults for all steps to PDF and Save the Output.

5. Save the job. Run this job every time you want to perform a regression test.

How it works...
Every time you run this job, each Report View will be executed with the saved parameter
values. If anything is broken structurally in the system (for example, a table or view gone
missing, columns renamed, account access removed, and so on), the execution will fail. You
can refer to the Schedule Management or Administration | Past Activities from Connection
Portal to check these.

Best Practices

322

Also, you can see the time taken by each report to execute. You can compare these timings
with the prior runs. Thus, if the performance is affected due to any change in the system
(grown volume, index dropped, and so on) it will be highlighted.

It is highly recommended that you create such a mechanism in your environment and run it
weekly or on-demand to ensure that everything is working fine.

There's more...
It is possible to configure the Cognos server to produce the PDF outputs on the filesystem.
You can use this and save the outputs and compare it with a previous run to check any
purposeful or accidental change impact. You will need to write a small program to rename
the PDF files appropriately.

Commenting the code
All applications need some kind of code commenting mechanism for maintenance purposes.
With programming languages it is easier; however, with tools it can be a little tricky to put
comments. In this recipe, we will see different options around putting comments within a
report that will be invisible for users but accessible to the developers.

Getting ready
Open any existing report in IBM Cognos Report Studio.

How to do it...
In this recipe we will see some techniques that you can use to insert comments to
your reports.

1. For the first technique to put comments and notes within a report and hide them from
users, go to Page Explorer and create a new page. Call it Comments.

2. Open this new page and drag text items onto it. Write all comments about the report
here (description, functionality, notes, special cases, and so on).

3. Now go to Condition Explorer and create a new Boolean variable. Define the
expression as: 1=0. Name this variable as Render_Comments.

4. Go to the Comments page. Open the Render Variable property and connect it to the
Render_Comments variable.

Chapter 13

323

5. Run the report. Notice that the Comments page is never rendered.

6. Now we will see another place to put comments. For that go back to IBM Cognos
Report Studio and open the main report page.

7. Drag a new HTML item onto the report header. Define the HTML code as follows:
<!-- This is HTML Comment -->

You can see this in the following screenshot:

8. Run the report to test it. Notice that the comment doesn't appear in the report, but if
you view the source code of the HTML output, you can see the comment.

Best Practices

324

9. Finally, let's see the XML commenting option. For that, copy the report to
the clipboard.

10. Add the following line to the beginning of code:
<!-- This is XML Comment -->

You can see this in the following screenshot:

11. Copy the whole specification again and paste it back into Cognos Report Studio.
Save the report.

12. Run the report to test it.

How it works...
We have seen three ways of putting comments and notes within the report in this recipe.
All of them work fine and do their job.

Some developers don't like creating a new page or HTML item for storing the comments, as
this means creating some objects on the report that are not required. These objects form a
part of the XML specification and they are validated and parsed every time the report runs.

Following that belief, we can put the comments in the XML specification itself. That way
comments are completely ignored by the Studio while validating and parsing. However, it does
mean that each time we need to refer to or update the comments, we will have to copy the
report specification in the XML editor.

Having a separate page (first approach) is a very clean method. However, it doesn't allow you
to put comments inline. So if you have a comment or note specific to a column or prompt,
you can't just put it near that object and make it noticeable.

Chapter 13

325

I personally find the HTML comment method to be the best. By having one HTML item in the
page header, I can put all the commentary about that page in there. Also, I can create specific
HTML items to hold particular object-related notes and put them near that object. Also,
later on if I am running any report and want to see the comments, I don't have to open it in
Cognos Report Studio. Instead, I can just look at the HTML source code and it will have those
comments inline.

I will leave it to your own experiments and preference to decide which one to follow in
your team.

Naming data containers (lists, crosstabs,
and charts) for use in Cognos Workspace

With IBM Cognos v10, there is a new tool introduced called IBM Cognos Workspace—Cognos
Business Insight in Version 10.1. It is meant for end users to build their own dashboards by
pulling required objects from prebuilt Report Studio reports.

This is great for end users because instead of running individual reports, they can bring
together required contents from multiple reports (and hence multiple sources) onto their
own dashboard and look them as and when required in one go. Also, each user can build
their own dashboard without necessarily being trained on report development. All the report
development can be done centrally, and end users can pull together their required objects as
per individual demand.

Though the Workspace tool is not covered in this book, we will see a best practice when
building Report Studio reports for use in Workspace.

Getting ready
Start a new report in Report Studio.

How to do it...
In this recipe you can see how can you name each data container with a meaningful name
in your report so that you can use them in the Cognos Workspace. To do this, perform the
following steps:

1. Drag new List and Chart items onto the report page.

2. Drag required items onto the list and chart to produce valid contents.

Best Practices

326

3. Now select the list using Selector (three orange dots) and check its Properties.
Scroll down to Name and define it as List of Products.

4. Similarly, select the chart and define the name as Sales across Regions.

5. Save the report as Products-Sales Report.

6. Now open the Cognos Workspace tool from Cognos Connection.

7. Create a new workspace and browse contents from the Content pane.

8. Locate our report called Products-Sales Report and expand it. You will notice
that both list and chart are available with the names that we have given. You can now
pull any or both of them onto the workspace.

Chapter 13

327

How it works...
By defining appropriate names for the data containers in Report Studio reports, we make
them user-friendly for Workspace users. They will exactly know what to expect while pulling
any object from a report built by you.

There's more...
If you update the objects in underlying Report Studio reports, the object on Workspace will be
marked with a dog-ear sign as shown in the following screenshot. Then, the user will have the
choice to update the object in the Workspace or leave it as it is.

Please refer to the IBM documentation about the Workspace tool to understand its features
and how to use it as a consumer of data.

Enabling a larger worksheet size for Excel
2007

Let's say that you have built a report that primarily is a data extract. It produces more than
65,000 rows. When users run it in Excel 2007, it is spread across multiple sheets though
Excel 2007 supports over a billion rows. Let's see how to fix by changing server settings.

Getting ready
You require admin rights for this so you can change service settings.

Best Practices

328

How to do it...
In this recipe we will see how to enable a larger Excel 2007 worksheet by changing IBM
Cognos BI server settings.

1. Open Cognos Administration from Connection Portal and go to Configuration |
Dispatcher and Services.

2. Click on the dispatcher and it should show you all services.

Chapter 13

329

3. Go to the Properties pane of Report Service and open Advanced Settings.

4. Define a new parameter called RSVP.EXCEL.EXCEL_2007_LARGE_WORKSHEET
and set its value as TRUE.

5. Do the same for the Batch report service. Restart the services.

How it works...
By defining this parameter, we enable Cognos to produce large worksheets with more than
65,000 rows in a sheet for Excel 2007 output.

Best Practices

330

There's more...
When the RSVP.EXCEL.EXCEL_2007_LARGE_WORKSHEET parameter is defined, you can
also define the RSVP.EXCEL.EXCEL_2007_WORKSHEET_MAXIMUM_ROWS property to control
the maximum number of rows Cognos created before spanning it over a new sheet; and you
can also define the RSVP.EXCEL.EXCEL_2007_OUTPUT_FRAGMENT_SIZE parameter to
solve any memory issues related to the Excel output.

Recommendations
and References

In this chapter, we will cover the following topics:

 f Version controlling

 f Recommendations for prompt types

 f Cognos Mashup Service

 f SDK and third-party tools for Cognos

 f IBM Cognos Analysis For Excel (CAFE)

 f IBM Cognos for Microsoft Office

 f IBM Cognos Workspace

 f IBM Cognos Workspace Advanced

 f IBM Cognos Cloud

Introduction
Let us now have a look at some topics that are very useful for a Cognos report developer to
know about.

Version controlling
Cognos allows direct connection to certain version controlling software (Visual Source Safe
being the most popular) for Framework Manager. However, there is no direct mechanism
for reports.

Recommendations and References

332

The following methods are seen in different organizations for version controlling of reports:

 f Copy the report specification to the clipboard, save it as an XML file, and store it in
the version controlling system. This method allows easy comparison to prior versions
of the report, and hence is good for code review during any changes. However, it can
be tedious. Also, restoring to an older version needs to be done for one report at a
time. This also breaks any existing report views defined at the target location.

 f Export the whole suite of reports and store the export file (the ZIP format) in the
version controlling system. This is less tedious compared to the previous one as only
one file is created for the whole suite of reports. Reverting to an older and stable
state is easy (the entire suite is reverted so that you can bring the system back to
older and stable state, like baseline). However, this method is not particularly useful
while troubleshooting a report to check what changed in it over the versions.

 f Use third-party tools. It is possible to hook up to the content store to retrieve the
information. There are some third-party tools available that use this method to
retrieve report specifications and do certain jobs. You can consider the tools like
MotioCI to automatically record report versions and track changes. They also
allow you to revert to older versions (more information can be found at
http://www.motio.com/products/ci/overview.do).

There are also similar tools from BSP Software (www.bspsoftware.com) and
Envisn (www.Envisn.com) that provide version controlling as well as other
administration tasks such as scheduling, migration, and monitoring.

Recommendations for prompt types
There are many types of prompts available for use in IBM Cognos Report Studio. Let's have a
look at some information about when to use which kind of prompt.

Data Suggested
prompt Description

Hierarchical The tree prompt This naturally supports hierarchical data.
2 to 4 values – single select,
mandatory

The radio button
group

The value prompt can be used in the radio
button UI for this kind of requirement.

5 to 100 values – single
select

The drop-down
list

This is another UI of the value prompt. It
saves space on the prompt page.

5 to 100 values – multi
select The listbox

This UI of the value prompt allows users to
select multiple values by holding down the
Shift + Ctrl keys.

Appendix

333

Data Suggested
prompt Description

More than 100 values The search and
select prompts

When more than 100 distinct values are
available to choose from, it is advisable to
use this prompt as users can search for
required values which is much more simple
than browsing. Also, it reduces the burden
to populate all values when the prompt
loads.

Cognos Mashup Service
Cognos Mashup Service is a web service that ships along with Cognos SDK (Software
Development Kit) for Version 8.4.1 onwards. While Cognos SDK supports report authoring
through programming, the Mashup Service is purely meant to run reports, access the report
output, and expose the contents to other business applications in the UI and workflow.

Partner services talk to Cognos Mashup Service (CMS) using a REST or SOAP request.
The contents are accessed in the XML, LDX, HTML, or JSON format. You can find more
information about this in the IBM developerWorks library.

Some popular usages of CMS are embedding Cognos report contents into Google Maps,
Google Earth, Adobe Air, and so on. Refer to the following link for one such example:

http://www.ibm.com/developerworks/data/library/cognos/page486.html

You can find more information and examples in the IBM developerWorks library and other
discussion forums.

SDK and third-party tools for Cognos
As IBM Cognos provides a very open structure and easy access to contents and components
through SDK and CMS, there are many products built over it. They use Cognos as the powerful
application engine to generate contents, and then these tools present the contents in a
visually appealing manner. When just Cognos Report Studio cannot meet your business
requirement, you can consider using such third-party tools to enhance Cognos services
and extract more values out of the investment made in Cognos.

There is one interesting third-party tool called MotioADF (www.motio.com) which provides
a simple programming method than raw Cognos SDK. It has predefined routines/toolkits to
provide a level of abstraction and ease of writing code to perform tasks on Cognos, such as
executing reports, passing prompt values, and browsing contents.

By using such tools on top of Cognos, you can leverage the power of Cognos BI and
extend/embed it into portals and websites very easily.

Recommendations and References

334

IBM Cognos Analysis For Excel (CAFE)
IBM's Cognos Analysis For Excel (CAFE) tool is quickly becoming popular among business
and financial analysts. This Excel add-in is separately sold by IBM (doesn't ship with BI
installation) and needs to be installed on the users' machines. It enables users to directly
perform analysis in Excel with Cognos sitting as a layer between the data source and Excel.

Cognos Framework Model works as the modeling and security layer here. It allows multiple
data sources to be pulled together into one business layer that is exposed in Excel using CAFE.
Users can directly perform drag-and-drop, slice-and-dice operations to analyze the data.

They can put Excel calculations such as forecast on top of the figures and also create
Excel charts. This brings the benefits of Cognos and Excel together and makes CAFE a
killer application.

I would strongly recommend CAFE if your organization has data analysts who need to perform
ad hoc analysis over data from warehouse and various other sources. You would need strong
data modeling skills and this logic will sit in the Framework Model. IBM CAFE is suitable for
dimensional models and Dimensionally Modeled Relational (DMR) schemas.

You can see how CAFE looks in the following screenshot:

Appendix

335

More information about CAFE can be found on the IBM website: http://www-142.ibm.
com/software/products/us/en/cognos-analysis-ms-excel.

IBM Cognos for Microsoft Office
IBM CAFE that allows you to do data analysis in Excel, can be just too smart for the business
users. Probably they only want to pull contents of predefined reports on their spreadsheets,
Word documents, or PowerPoint presentations.

IBM Cognos for Microsoft Office is the way to go in such cases. It allows users to pull
contents such as graphs, charts, tables, and crosstabs from existing reports into their
MS Office documents. They can refresh contents on demand.

More information can be found on the IBM website: http://www-142.ibm.com/
software/products/us/en/cognos-microsoft-office/.

Recommendations and References

336

IBM Cognos Workspace
Cognos Workspace provides a new way for end users to consume the required information
from Cognos reports in their own hand-made workspace.

This tool was introduced in v10 and can be launched from the Connection portal from the
right-top corner like other studios. Using this tool, you can create a workspace and then pull
in required reports or parts of reports on it. You can also pull analysis and queries built using
Analysis Studio and Query Studio respectively.

The whole idea is that rather than running tens of different reports, you can choose and pull
in the required parts from all these reports together so that next time you just open your
workspace to view them all in one go. This is a great tool for end users, as they can actually
pull contents that are sourced from totally different databases/cubes on one screen and
make use of that information. While Workspace won't let them create any new list, crosstab,
or chart, it just allows them to collate the required parts from existing reports to make the
best of it. This can also be used to quickly build dashboards and share them publicly.

Explore more about the Workspace tool using the IBM user guide from Info Centre. Look for
Cognos Workspace User Guide 10.2.0 on the IBM website.

IBM Cognos Workspace Advanced
With Cognos Version 7 and 8, users were often overwhelmed by the choices of "Studios" to
create any report. There is Query Studio for basis relational reporting, Analysis Studio for
dimensional reports, Report Studio Express mode for slightly advanced authors, and Report
Studio Professional mode for fully trained professional authors.

In v10, IBM has tried to consolidate all these functionalities into one tool called Cognos
Workspace Advanced. There is hope that the user community will embrace this tool as
an ultimate do-it-all tool for end users so that Query Studio and Analysis Studio can be
decommissioned over a period and Report Studio can be left as an IT tool or professional
report authoring tool.

Explore more about Workspace Advanced from the IBM user guide. Look for Cognos
Workspace Advanced User Guide 10.2.0 on the IBM website.

Appendix

337

IBM Cognos Cloud
Cognos Software and Analytics is now available as a service over the Cloud. IBM Cloud and
Amazon Cloud are becoming very popular, as companies like the flexibility of borrowing
resources as required rather than investing in processors, memory, storage, and software
beforehand only to realize that they are either too less or too much for the requirement.

With Cloud-based BI, companies can now get access to Cognos BI software easily, quickly,
and at lower entry costs. This comes with an option of scaling up as and when required. While
Cognos software and services will be on the Cloud and you can bring down when required, the
data sources and database will typically sit within your organization with a secured connection
for the Cloud. You might choose the host content store on the Cloud and keep the actual
query databases within your company behind the firewall.

More information about these can found on the IBM website if you intend to go Cloud!

Index
Symbols
@Comments parameter 47
<conditionalStyles> tag 130
<crosstabColumns> tag 132
_first_of_month() function 198
_last_of_month() function 198
% margin

formatting 21
(nnn) nnn-nnnn format 76

A
Absolute 311
Active Reports 237
Advanced Conditional Style option 60
Aggregate button 172
aggregation

about 15-17
versus pre-aggregated values 171-174

aggregation mode 210
Alias member unique names option 209, 305,

306
Allow horizontal pagination option 147
Ancestor button 140
Apply Style button 230
auto-submit property 38

B
Background Color dialog 151
Background Effects Presets 265
Block Variable dialog 62
Blue liner gradient with blue border preset

263
boolean variable 52
Box Type property 205

BSP Software
URL 332

bullet charts
about 272
components 272
creating 273-276

C
CAFÉ 334, 335
CanSubmitPrompt() function 72
cascaded prompts

adding 36-38
auto-submit property 38
cascade source 38
working 38

cells
merging, in Excel 107, 108

chart
about 257
Background Effects Presets 265
converting, to another chart type 265-268
formatting, options 259-264
Palette Presets 264
types 258

Chart Palette Presets 264
Chart report 238
CheckData() function 72
classes

customizing, for report-wide effect 314-316
Clustered Column with 3-D Effects chart 264
Clustered Cylinder Bar with 3-D Effects chart

266
CMS 333
code

commenting 322-325

340

Cognos
SDK 333
third-party tools 333

Cognos Analysis For Excel. See CAFE
Cognos Mashup Service. See CMS
Cognos PowerCube-based 159
Cognos Report Studio. See Report Studio
Cognos Workspace 336
Cognos Workspace Advanced 336
Colored Regions property 275
column

filtering 161-165
hiding, in crosstabs 25-29

column titles
freezing 296-298

comments
inserting, to reports 322-324

conditional block
about 61
using 61-63

conditional column titles
about 111-114
working 114

conditional formatting
about 49
adding 49-52
boolean variable 52
report language variable 53
string variable 52

conditional styles
playing 57-60
unreferenced conditional styles, deleting 210

Connect button 250
container size

controlling 134-136
Copy Report to Clipboard option 213
Create a parameterized filter option 31
Create new query option 31
crosstab

column, hiding 25-29
crosstab intersection

drill through, defining 64-66
crosstab intersection drill-through definition

overriding 66, 67
crosstab report

using, instead of list report 160, 161

CSVIdentityMap macro
used, for data level security adding 184-186

CSVIdentityNameList function 186
current_timestamp parameter 198

D
database

writing, back to 44-49
Data Button Bar Query 249
Data Check Box Group

used, for data filtration 251-255
data containers

naming 325-327
Data Deck

about 247
working with 247-251

data expression window
values, browsing from 224, 225

data format
default data format, using 233, 235

data formatting
overriding, patterns used 288, 289

Data Items pane
items, dragging from 306

data level security
adding, CSVIdentityMap macro used 184-186

Data Tab control 242
Data Toggle Button Bar control 254
dates

formatting 19, 21
Date Time control

about 83
manipulating 83, 84
working 84, 86

Deck
working with 242-246

Deck Control 242
Define content option 68
detail

about 8
after aggregation, applying 12
before aggregation, applying 12

detail filters
about 9-12
working 12

341

Dimensionally Modeled Relational (DMR)
schemas 334

dimensions
swapping, MUN manipulation used 177-181

DimTime crosstab 180
display value property

about 8
versus value property 30-33

DMR 159
drill link

alternating 101-103
copying 122-125
pasting 122-126
render variable 103

drill targets
changing 116-122

drill-through
conditional drill-through, setting up 290-292
defining, through crosstab intersection 64-66

Drill-through Definition1 button 117
dynamic default values

CanSubmitPrompt 72
defining, for prompt 70, 71
GetElementsByTagName 72
SelectedIndex 72
Span 72

E
Enable horizontal page numbering option

148
Envisn

URL 332
Excel

merged cells 107
worksheet name 109, 110

Excel 2007
larger worksheet size, enabling 327-330

Excel output
merged cells 107, 108

Execution Optimization property 220
execution timeout

setting, for query 214-216
Exploded Slices property 270-272

F
filter function 165
filtering, Report Studio

detail 8
slicer 8
summary 8

filters
about 8
if then else, implementing 18, 19

Finish button 77
First Slice Angle property 272
footer

report name, displaying 155-157
user name, displaying 199, 200

G
GetElementsByTagName function 72
GO Data Warehouse (query) 8
GO Data Warehouse (query) package

using 238
Google Map example 99, 101
grab them all

about 230
using 231-233

great_outdoor_warehouse 187
grouped values

sorting 13
working 14

H
hidden items

highlighting 307, 308
Hide Adornment property 77
horizontal pagination

about 145
steps 146, 147
used, for page numbering 147, 148

HTML items
execution error 155

Hyperlink component
about 101
using, for linking 99, 101

342

I
IBM

website 335
IBM CAFE 335
IBM Cognos 10 258
IBM Cognos Cloud 337
IBM Cognos for Microsoft Office 335
IBM Cognos Samples installation 159
IBM Cognos Workspace. See Cognos

Workspace
IBM Cognos Workspace Advanced. See

Cognos Workspace Advanced
if condition 19
iFrame

about 292
used, for dynamically switching between

reports 292-296
iFrame-Product report 296
if then else

implementing, in filters 18, 19
Image component 95
images

displaying dynamically 92-95
relative paths, using 308-311

Interactive Data option 220

J
JavaScript

execution error 155
used, for variable width bar chart creation

86-89
JavaScript files

execution, controlling 312-314

L
Limit on inserted individual members option

210
List data container 297
List Query 249
list report

about 160
line chart, nesting 39-42

M
macro

used, for token adding 191-194
Macros 183, 184
master detail relationship

defining 43
Maximum Execution Time property 216
maximum row limit

setting, for query 216-218
MHT (Microsoft Hypertext Archive) 237
missing image issue

handling 96-98
missing values

about 285
versus zero values 286, 287

MONTH YEAR format 21, 22
Multidimensional Expressions (MDX) 161
multiple aggregation 17
MUN manipulation

used, for dimension swapping 178-181

N
negative values

formatting 53-56
marking 57
Running difference function 56

No. of Decimal Places property 290
numbers

formatting 19, 21
numerical format

formatting 21
Numeric Baseline property 267

O
OM 80
Open Report from Clipboard option 213
Optional_defaultValue 191
Order Method. See OM
orphan rows

about 137
eliminating 137-139

343

P
page

numbering, horizontal pagination used
147, 148

structure, viewing 226-228
Page Explorer 110
page orientation

specifying 139-142
Page Set properties 154
page sets

defining 153, 154
page size

specifying 139-142
page title repetition

avoiding 142-144
Pagination property 148
ParamDisplayValue (parameter name)

function 33
ParamValue (parameter name) function 33
patterns

used, for overriding data formatting 288-290
PDF Page Setup property 140
percentages

formatting 19-21
Pick-Up Style button 230
pie charts

about 268
creating 269-271

PL 80
Plot Area Fill property 265
pre-aggregated values

versus aggregation 171-174
ProductKey parameter 48
Product Line. See PL
prompt

adding, to Slicer 166-169
making optional 188-190
output format, choosing 149, 150

promptButtonFinish() function 82
prompt controls

hiding, at runtime 77-79
showing, at runtime 77-79

PROMPT() function 188

prompt macro
using, in SQL 186-188

Prompt Macro functions 169
prompt() macros

using 194, 195
promptmany()macros

using 194, 195
prompt types 332
prompt values

displaying, in security based report 195-197
Properties pane 263
Pure_Optional 191

Q
query

capturing 220-223
capturing, for database 223
execution timeout, setting 214-216
formatting 223
maximum row limit, setting 216-218

Query Calculation tool 163
Query Explorer tab 247, 248
query items

number, reducing 301-306
query objects

unreferenced query objects, deleting
209, 306

Query property 200

R
references

changing 126-128
regression testing 320-322
Relative 311
relative path

using, for images 308, 310
REMOVE() function 75
Render variable property 103
report execution

timing 281-284
report language variable 53
report name

displaying, in footer 155

344

reports
dynamically switching between, iFrame used

292-296
full reports, copying 211-213
full reports, pasting 211-213
partial reports, copying 210-213
partial reports, pasting 210-213
slow report validation, handling 218, 219
specifications, upgrading 213, 214
styles, applying on columns 228-230
tool tips, displaying 104-106

Report Studio
about 69, 70
environmental options, using 204-208

Report Studio filters 165
reports version controlling

methods 332
report view 284
report-wide effect

classes, customizing 314-316
classes, customizing for 315, 316

Revenue 276
right colors

selecting 151, 152
roleValue() function

about 175
working 175-177

rollup aggregation 15-17
row level formatting 128-131
rows

filtering 161-165
Rows only option 170
rows per page

controlling 134, 135
Rows per page property 297
Running difference function 56
Run with options button 283

S
sales report

creating 197-199
scatter charts

about 277
creating 277-279

Section button 23

sections
creating 22-24
creating, advantages 24

security based report
prompt values, displaying 195-197

SelectedIndex property 72
Select Multiple Values button 225
Set () function 168
SET() function 304
setValue function 84
Shipment Month. See SM
Show Hidden Objects 307
Size and Overflow property 136, 263
Slicer

prompt, adding 166-169
slicers 8
Slide Animation Direction property 246
slow report

validation, handling 218-220
SM 80
Source type property 63
SQL

prompt macro, using in 186-188
Stored Procedure Query Subject 46
string variable 52
Structure | Create Crosstab Nodes 209
style.display property 79
style variable property 53
Substitute() function 181
Summarize Small Slices property 270, 272
summary 8
summary filters

about 9-11
working 12

Suppress icon 171
Suppression property 170

T
tabbed reports

building 238-241
Tabs Definition button 239
Target revenue 276
templates

creating 317-320
textbox prompts

validating 75-77

345

Text property 100
Text Source Variable property 111
Time dimension 178
Time (ship date) dimension 178
timestampMask() function 198
TOAD 223
token

adding, macro used 191-194
Tools | CopyReporttoClipboard option 118
Tools | OpenReportfromClipboard option 120
Tools | Options | View | Reuse IBM Cognos

Viewer window 209
Tools | Show Generated SQL/MDX option 32
traffic light report 92-95

U
URL Source Variable dialog 93
user name

displaying, in footer 199, 200
use value property 8

V
value prompt title

changing 73-75
value property

versus display value property 30-33

values
selecting automatically 80, 81
submitting automatically 80-82

variable width bar chart
creating, JavaScript used 86-89

View | Visual Aids 208, 209

W
whole report

filtering 165, 166
worksheet size

larger worksheet size, enabling 327-330

X
XML

about 115
feature, row level formatting 128

Z
zero suppression

achieving 169-171
zero values

versus missing values 285-287

Thank you for buying
IBM Cognos 10 Report Studio Cookbook

Second Edition

About Packt Publishing
Packt, pronounced 'packed', published its first book "Mastering phpMyAdmin for Effective
MySQL Management" in April 2004 and subsequently continued to specialize in publishing
highly focused books on specific technologies and solutions.

Our books and publications share the experiences of your fellow IT professionals in adapting
and customizing today's systems, applications, and frameworks. Our solution based books give
you the knowledge and power to customize the software and technologies you're using to get
the job done. Packt books are more specific and less general than the IT books you have seen in
the past. Our unique business model allows us to bring you more focused information, giving
you more of what you need to know, and less of what you don't.

Packt is a modern, yet unique publishing company, which focuses on producing quality,
cutting-edge books for communities of developers, administrators, and newbies alike.
For more information, please visit our website: www.packtpub.com.

About Packt Enterprise
In 2010, Packt launched two new brands, Packt Enterprise and Packt Open Source, in order to
continue its focus on specialization. This book is part of the Packt Enterprise brand, home to
books published on enterprise software – software created by major vendors, including (but
not limited to) IBM, Microsoft and Oracle, often for use in other corporations. Its titles will offer
information relevant to a range of users of this software, including administrators, developers,
architects, and end users.

Writing for Packt
We welcome all inquiries from people who are interested in authoring. Book proposals
should be sent to author@packtpub.com. If your book idea is still at an early stage and you
would like to discuss it first before writing a formal book proposal, contact us; one of our
commissioning editors will get in touch with you.

We're not just looking for published authors; if you have strong technical skills but no writing
experience, our experienced editors can help you develop a writing career, or simply get some
additional reward for your expertise.

IBM Cognos Business
Intelligence
ISBN: 978-1-84968-356-2 Paperback: 318 pages

Discover the practical approach to BI with IBM
Cognos Business Intelligence

1. Learn how to better administer your IBM
Cognos 10 environment in order to improve
productivity and efficiency

2. Empower your business with the latest
Business Intelligence (BI) tools

3. Discover advanced tools and knowledge that
can greatly improve daily tasks and analysis

IBM Cognos 10 Framework
Manager
ISBN: 978-1-84968-576-4 Paperback: 186 pages

A comprehensive, practical guide to using this
essential tool for modeling your data for use with
IBM Cognos Business Intelligence Reporting

1. Your complete and practical guide to IBM
Cognos Framework Manager

2. Full of illustrations and tips for making the best
use of this essential tool, with clear step-by-step
instructions and practical examples

3. All the information you need, starting where
the product manual ends

Please check www.PacktPub.com for information on our titles

IBM Cognos Insight
ISBN: 978-1-84968-846-8 Paperback: 142 pages

Take a deep dive into IBM Cognos Insight and learn
how this personal analytics tool can be integrated
with other IBM Business Analytics products

1. Step-by-step, how to guide, for installing and
configuring IBM Cognos Insight for your needs

2. Learn how to build Financial, Marketing, and
Sales workspaces in Cognos Insight

3. Learn how to integrate and collaborate with IBM
Cognos Business Intelligence

IBM Cognos Business
Intelligence 10.1 Dashboarding
Cookbook
ISBN: 978-1-84968-582-5 Paperback: 206 pages

Working with dashboards in IBM Cognos BI 10.1:
Design, distribute, and collaborate

1. Exploring and interacting with IBM Cognos
Business Insight and Business Insight
Advanced

2. Creating dashboards in IBM Cognos Business
Insight and Business Insight Advanced

3. Sharing and Collaborating on Dashboards
using portlets

Please check www.PacktPub.com for information on our titles

	Cover
	Copyright
	Credits
	About the Authors
	About the Reviewers
	www.PacktPub.com
	Preface
	Table of Contents
	Chapter 1: Report Authoring Basic Concepts
	Introduction
	Summary filters and detail filters
	Sorting grouped values
	Aggregation and rollup aggregation
	Implementing if-then-else in filters
	Formatting data – dates, numbers, and percentages
	Creating sections
	Hiding columns in crosstabs
	Prompts – display value versus use value

	Chapter 2: Advanced Report Authoring
	Introduction
	Adding cascaded prompts
	Creating a nested report – defining the master detail relationship
	Writing back to the database
	Adding conditional formatting
	Formatting negative values
	Playing with conditional styles
	Using conditional blocks – many reports
in one
	Defining drill-through from crosstab intersection
	Overriding crosstab intersection
drill-through definitions

	Chapter 3: Using JavaScript Files – Tips and Tricks
	Introduction
	Defining dynamic default values for prompts
	Changing the title of the value prompt
	Validating textbox prompts
	Showing/hiding prompt controls at runtime
	Selecting and submitting values automatically
	Manipulating the Date Time control
	Creating a variable width bar chart using JavaScript

	Chapter 4: The Report Page – Tips and Tricks
	Introduction
	Showing images dynamically (traffic light report)
	Handling the missing image issue
	Dynamic links to an external website
(a Google Maps example)
	Alternating drill links
	Showing tooltips on reports
	Merged cells in Excel output
	Worksheet name in Excel output
	Conditional column titles

	Chapter 5: Working with XML
	Introduction
	Changing drill targets quickly
	Copying and pasting drill links
	Removing references to old packages or items
	A hidden gem in XML – row level formatting

	Chapter 6: Writing Printable Reports
	Introduction
	Controlling the container size and rows
per page
	Eliminating orphan rows
	Defining page orientation and size (and overriding them for one page)
	Avoiding page title repetition
	Horizontal pagination
	Page numbering with horizontal pagination
	Choosing the output format from a prompt
	Choosing the right colors
	Defining page sets
	Cautions about HTML items and JavaScript files
	Displaying the report name in a footer

	Chapter 7: Working with Dimensional Models
	Introduction
	List report or crosstab report
	Filtering rows or columns
	Filtering a whole report
	Adding a prompt into Slicer and its limitations
	Achieving zero suppression
	Aggregation versus preaggregated values
	The roleValue() function
	Swapping dimensions using MUN manipulation

	Chapter 8: Working with Macros
	Introduction
	Adding data-level security using the CSVIdentityMap macro
	Using the Prompt macro in native SQL
	Making prompts optional
	Adding a token using macros
	Using the prompt() and promptmany() macros in query subjects
	Showing the prompt values in a report based on security
	String operations to get it right
	Showing a username in the footer

	Chapter 9: Using Report Studio Efficiently
	Introduction
	Using Report Studio's environmental options
	Copying and pasting partial or full reports
	Upgrading report specifications
	Setting the execution timeout
	Setting the maximum row limit
	Handling slow report validation
	Capturing a query
	Browsing values from the data expression window
	Viewing the page structure
	Picking up and applying styles
	Using the "grab them all" practice
	Using Default Data Formats

	Chapter 10: Working with Active Reports
	Introduction
	Building tabbed reports
	Working with Decks
	Working with the Data Deck
	Filtering data using Data Check Box Group

	Chapter 11: Charts and New Chart Features
	Introduction
	Chart formatting options
	Converting a chart to another chart type
	Working with pie charts
	Getting started with bullet charts
	Getting started with scatter charts

	Chapter 12: More Useful Recipes
	Introduction
	Timing report execution
	Missing values versus zero values
	Overriding data formatting using patterns
	Setting up conditional drill-throughs
	Dynamically switching between reports using an iFrame
	Freezing column titles

	Chapter 13: Best Practices
	Introduction
	Reducing the number of query items
	Highlighting hidden items
	Using relative paths for images
	Controlling JavaScript file execution
	Customizing classes for report-wide effect
	Creating templates
	Regression testing
	Commenting the code
	Naming data containers (lists, crosstabs, and charts) for use in Cognos Workspace
	Enabling a larger worksheet size for Excel 2007

	Appendix: Recommendations and References
	Introduction
	Version controlling
	Recommendations for prompt types
	Cognos Mashup Service
	SDK and third-party tools for Cognos
	IBM Cognos Analysis For Excel (CAFE)
	IBM Cognos for Microsoft Office
	IBM Cognos Workspace
	IBM Cognos Workspace Advanced
	IBM Cognos Cloud

	Index

